

Chemo- and regioselective aqueous phase, co-acid free nitration of aromatics using traditional and nontraditional activation methods

> Kelsey M. Plasse, Tara R. Mooney, Béla Török Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA

Introduction

The electrophilic nitration of aromatic compounds is a highly valuable synthetic process¹. Nitroaromatics are used in large quantities in a wide variety of industries including pharmaceuticals, high energy materials/explosives, agrochemicals, dyes, and perfumes. In addition to their direct applications they serves gateway chemicals to amines, hydroxylamines, aldehydes, carboxylic acids, and as indirect starting materials to heterocycles². As a prominent example, acetaminophen or paracetamol, the API in the drug Tylenol, is produced via the reduction and subsequent acylation of *p*-nitrophenol³. Traditionally, nitration methods use highly acidic and corrosive mixed acid systems which present a number of drawbacks including poor yields, low regioselectivity, and limited functional group tolerance⁴. Additionally, these methods are corrosive, hazardous, and waste-producing. As a consequence, there is a need for effective and environmentally benign methods for electrophilic aromatic nitrations. Especially because, according to earlier data, 10^8 tons of nitro-aromatics are produced worldwide every year⁵. The volume of the industrial production of chemicals, pharmaceuticals, agrochemicals, or consumer goods is directly related to the chemical industry where chemical processes are carried out on a multibillion ton scale worldwide. Hence, even a 10% cut of hazardous waste means a tremendous decrease in the total amount of waste to treat. In this work, the major aim was to develop reaction protocols that are more environmentally benign while also considering safety issues. The reactions were carried out in dilute aqueous nitric acid, and a broad range of experimental variables, such as acid concentration, temperature, time, and activation method, were investigated.

Several alternative activation methods were tested including conventional stirring, ultrasounds, microwaves, and high hydrostatic pressure. Nitrations using aqueous 15.8M HNO₃ and non-polar hydrocarbons are a two-phase system which is likely limited by mass transfer over the phase boundary. Thus, we hypothesized ultrasonication, known for its mixing efficiency, would increase the reaction rate compared to conventional stirring. Microwaves were used for deactivated aromatics that did not produce sufficient yields under other conditions. Nitrations under high hydrostatic pressure were also tested.

Methods

Initial Investigations	Results
Table 1. Effects of reaction conditions on the nitration of m -xylene using fuming nitric acid	Scope
$\frac{\text{fuming HNO}_3}{\text{RT, atm}} \longrightarrow 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	Table 3. Nitration of aromatics with co-acid-free aqueous nitric acid.
Entryfuming HNO3Additive/time (min)A (%) ^b B (%) ^b C (%) ^b $(mmol)^a$ catalyst112.01K.10.(0.5)10275016	entry substrate molar ratio conditions product yield % ^a (S) HNO ₃ /S
112.01K-10 (0.5 g)10375916218.01K-10 (0.5 g)10074913324.01K-10 (0.5 g)90641224448.02K-10 (0.5 g)9036658512.011590909090	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9 24.01 -15 87 13010 24.01 - 90 91 9 0 11 48.02 - 15 37 5 58 12 48.02 - 90 39 5 56	$3 \qquad \begin{array}{c} H_2 \\ H_3C \\ \end{array} \qquad \begin{array}{c} H_2 \\ H_3C \\ \end{array} \qquad \begin{array}{c} 11 \\ H_3C \\ \end{array} \qquad \begin{array}{c} 11 \\ H_3C \\ \end{array} \qquad \begin{array}{c} H_2 \\ H_3C \\ H_3C \\ \end{array} \qquad \begin{array}{c} H_2 \\ H_3C \\ H_3C \\ \end{array} \qquad \begin{array}{c} H_2 \\ H_3C $
^a calculated based on literature fuming HNO ₃ density of 1.513 g/mL. ^b GC yields	4 H_3C 10 stirring, rt, 2.6 mL HNO ₃ /0.45 mL H_3C NO ₂ 60 O -xylene, 90 min (3/4-NO ₂ : H_3C 31/69)
Optimization Table 2 . Effect of reaction conditions on the nitration of mesitylene.	5 H_3^{C} $H_$
$15.8 \text{ M} \text{HNO}_3$	$\begin{array}{cccccccc} 6 & \overset{H_{3}C}{\swarrow} & 11 & \text{ultrasounds, rt, 2.6 mL HNO}_{3} & \overset{H_{3}C}{\smile} & \overset{NO_{2}}{\smile} \\ & 0.45 \text{ mL } p\text{-xylene, 120 min} & \overset{H_{3}C}{\smile} & \overset{NO_{2}}{\smile} & 71 \end{array}$
EntryHNO3mesitylenemolar ratioconditionstimeyield %a (mL) (mL) $HNO3/Mes$ (min) (min) 15.00.522ultrasounds rt3034	7 $H_{3}C \xrightarrow{CH_{3}} 11$ stirring, rt, 2.5 mL HNO_{3}/ 0.5 mL mesitylene, 60 min $H_{3}C \xrightarrow{CH_{3}} 100$
1 5.0 0.5 22 ultrasounds, rt 50 54 2 5.0 0.5 22 ultrasounds, rt 40 91 3 5.0 0.5 22 ultrasounds, rt 50 94 4 5.0 0.5 22 ultrasounds, rt 90 100	8 H_3C° 11 ultrasounds, rt, 2.6 mL HNO ₃ /0.4 H_3C° 95 mL anisole, 120 min (o/m/p: 19/0/81)
5 5.0 0.5 22 conventional stirring, rt 60 97 6 6.0 0.5 26.3 ultrasounds, rt 60 96 7 6.0 0.5 26.3 conventional stirring, rt 60 97	9 Br 11 microwaves, 50 °C, 2.6 mL HNO ₃ /0.4 mL bromobenzene, 30 Br NO ₂ 93 (o/m/p: 2/0/98)
8 3.5 0.5 15.4 ultrasounds, rt 60 95 9 3.5 0.5 15.4 conventional stirring, rt 60 90	$10 C^{I} \qquad 11 \qquad \text{microwaves, 50 °C, 2.6 mL} C^{I} \qquad 18$

Entry	HNO ₃ (mL)	mesitylene (mL)	molar ratio HNO ₃ /Mes	conditions	time (min)	yield % ^a
1	5.0	0.5	22	ultrasounds, rt	30	34
2	5.0	0.5	22	ultrasounds, rt	40	91
3	5.0	0.5	22	ultrasounds, rt	50	94
4	5.0	0.5	22	ultrasounds, rt	90	100
5	5.0	0.5	22	conventional stirring, rt	60	97
б	6.0	0.5	26.3	ultrasounds, rt	60	96
7	6.0	0.5	26.3	conventional stirring, rt	60	97
8	3.5	0.5	15.4	ultrasounds, rt	60	95
9	3.5	0.5	15.4	conventional stirring, rt	60	90

It can be concluded that aqueous dilute nitric acid can be applied for the nitration of various aromatic compounds in moderate to excellent yields and often high selectivites. Notably, these conditions prevent the undesired double nitration of substrates, which sets it apart from fuming nitric acid-driven reactions or other processes involving strong co-acids. Additionally, the use of commercially available diluted nitric acid (15.8 M) provides several benefits including improved safety and significantly reduced waste production. Our results suggest that scaling up this nitration protocol for industrial purposes warrants further consideration.

References (1) G. A. Olah, R. Malhotra, S. C. Narang, Nitration: Methods and Mechanisms. Wiley-VCH, New York, Weinheim, 1989. (2) S. Patra, I. Mosiagin, D. Katayev, R. Giri, Organic Nitrating Reagents. Synthesis 2022; 54, 3432-3472. (3) Godfrey Wilbert, Carmel, and John De Angelis, Monroe, Process of preparing N-acetyl-p-aminophenol. US Patent, 2,998,450, 1961. (4) J. I. Kroschwitz, Nitrobenzene and nitrotoluene. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley-Interscience, 2004. (5) D. Singh, K. Mishra, G. Ramanthan, Bioremediation of nitroaromatic compounds. Wastewater Treatment Engineering. 2015.