Carbonization of Yerba Mate Stick with Micrometric Pores Using Home-built Kiln

Ángela M. Cuellar Felantana^{a,b,c*}, Natalia Quici^{a,b}, Nahuel V. Montesinos^{a,b*}, Pablo M. Arnal ^{d,e*}

^a DQRA, CNEA-CONICET, Av. Gral. Paz 1499, 1650, San Martín, Bs.As., Argentina. ^b Centro de Tecnologías Químicas, FRBA-UTN, Medrano 951, CABA, Argentina. ^c Instituto Sabato, UNSAM, Av. Gral. Paz 1499, 1650, San Martín, Bs.As., Argentina. *angelacuellar@cnea.gob.ar, vnmontesinos@frba.utn.edu.ar, arnal@quimica.unlp.edu.ar

^d CETMIC, Camino Centenario y 506, CC 49, B1897ZCA, M. B. Gonnet – La Plata, Argentina.

^e Facultad de Ciencias Exactas, UNLP. 47 y 115 (1900) La Plata, Argentina.

Abstract: Contaminant metals represent a significant threat to global water systems, with severe implications for human health. Treatment technologies utilizing porous materials embedded with nanomaterials offer a promising approach for the effective removal of these contaminants. In this study, charcoal was produced from yerba mate sticks, a form of industrial waste. The raw material, provided by Empresa Rosamonte (Establecimiento Diez Hermanos), was pyrolyzed in a homemade furnace following the methodology reported by Long et al.4 The produced simples were thoroughly characterized using particle size análisis, elemental composition analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The resulting charcoals exhibited cylindrical, parallel pores separated by micrometric walls and interconnected by micropores within the thin walls. A reduction in the average size of yerba mate sticks was observed after pyrolysis, attributed to the contraction and fragmentation of the initial material. The process achieved a yield of 32 ± 1%, corresponding to the production of 170 ± 21 g of charcoal—two orders of magnitude higher than yields typically obtained with laboratory-scale tubular furnaces. This study underscores the potential of utilizing industrial waste for producing functional porous materials with scalable yields, contributing to sustainable solutions for water contamination challenges.

INTRODUCTION

MATERIALS AND METHODS

Synthesis of Charcoal: In a replica of the furnace reported by Long and Arnal (2021), the PYM was carbonized for 3 hours. Three independent syntheses were performed (PYM-C#1, PYM-

Materials focused on

C#2, and PYM-C#3).

Characterization: X-ray diffraction (XRD) was conducted using a multipurpose Panalytical EMPYREAN model with a Cu-K α source. Scanning electron microscopy (SEM) was performed on a JEOL JCM-6000 Neo Scope at high vacuum and 15 kV. Elemental analysis of CHNS was carried out using a Carlo Erba EA 1108 (10 mg). Stick size was analyzed using image analysis software ImageJ.

RESULTS AND DISCUSSION

50 µm

50 µm

50 µm

Table 1. Pore size in coal walls		
Material	Average pore size diameter (µm)	
PYM-C#1	0.193 ± 0.039	

Figure 1. Scanning Electron Microscopy (SEM) of the materials before and after each carbonization. A) PYM-C#1, B) PYM-C#2, C) PYM-C#3, and D) PYM.

- Cylindrical pore particles were obtained, separated by micrometric walls and interconnected by macropores located in the thin walls..
- The pores located in the thin walls exhibited sub-micrometric sizes.

Table 2. Elemental analysis of the samples before and after carbonization.

Muestra	N (%)	C (%)	H (%)	S (%)	Otros
PYM C#3	0,5	75,5	2,8	ND	21,2
PYM C#2	0,7	61,7	2,7	ND	34,9
PYM C#1	0,5	72,8	3,3	ND	23,4
PYM	0,5	46,5	6,2	ND	46,8

• These results show that the charcoals exhibit a significantly higher C/H ratio compared to the biomass.

Experiment	Summatio	%	
number	projected area (cm ²) PYM PYM-C		shrinkage of charcoal
#1	3.14	2.19	30.17
#2	3.24	2.32	28.36
#3	3.66	2.44	33.50

 Table 3. Shrinkage of biomass after carbonization

• The summation of the projected areas shows a decrease after carbonization, indicating a size reduction due to shrinkage.

Reactor	Raw material	Initial Biomass (g)	Charcoal obtained (g)	Carbonization yield (%)	Reference	obtained from charcoal particles. Calcit (•) and CaC_2O_4 ·H ₂ O (•), a) PYM-C#1, b
Home-built kiln	Yerba Mate Stick	509 ± 60	170 ± 21	32 ± 1	Current study	$= \begin{array}{c} () & \text{and} & \text{clear}() & \text{all} & \text{clear}() & \text{all} & \text{clear}() & $
Home-built kiln	Eucalyptus stick	701 ± 40	200	30 ± 1	Long & Arnal, 2021	
Tubular furnace	Yerba Mate Stick	3	0.87	29	Jerez & et al.	
• This yield is signater than un	imilar to that obtaine der typical laboratory	d in the referen	ced studies. The g a tubular furna	amount synthesiz	zed is two orders of magnit	de • Presence of calcium oxalate crystals an their derivative calcite.

Replicated furnace from Long & Arnal, 2021.

It is evaluated by

among other materials, also

filtration system

Yerba mate stick

CONCLUSIONS

Our work demonstrates that the simple and inexpensive homemade furnace converts yerba mate sticks into charcoal, based on the experimental evidence obtained: SEM, CHNS elemental analysis, XRD, and carbonization yield. A decrease in the average size of the yerba mate sticks was confirmed after pyrolysis as a result of the contraction and breakage of the starting material. The process recorded a yield of $32 \pm 1\%$, corresponding to the production of 170 ± 21 g of charcoal, two orders of magnitude greater than what is usually obtained in laboratory tubular furnaces.

REFERENCES

Glass, S. V., & Zelinka, S. L. (2021). Chapter 04: Moisture Relations and Physical Properties of Wood. In Wood handbook: wood as an engineering material INYM. (2021). En 2020 el consumo de yerba mate totalizó 311, 7 millones de kilos. https://inym.org.ar/noticias/estadisticas/79445-en-2020-el-consumo-de-yerba-mate-totalizo-311-7millones-de-kilos.html

Jerez, F., Ramos, P. B., Córdoba, V. E., Ponce, M. F., Acosta, G. G., & Bavio, M. A. (2023). Yerba mate: From waste to activated carbon for supercapacitors. Long, L. A., & Arnal, P. M. (2021). Conversion of Wood into Hierarchically Porous Charcoal in the 200-Gram-Scale using Home-Built Kiln**.