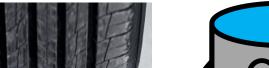
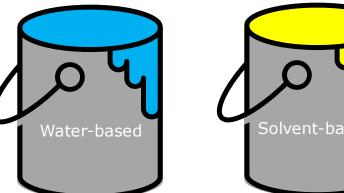
Designing CO₂-responsive and degradable polymers for coating applications

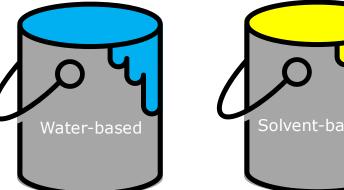
Shannon Whitty, Tobias Robert, Michael Cunningham, and Philip Jessop Department of Chemistry, Queen's University, Kingston, Ontario, Canada

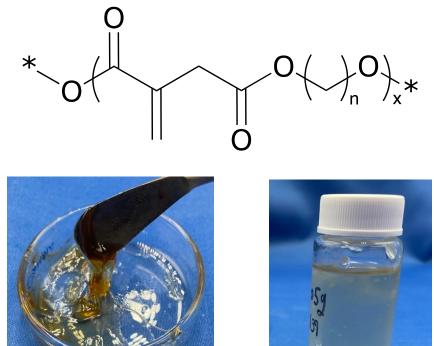
1. Introduction

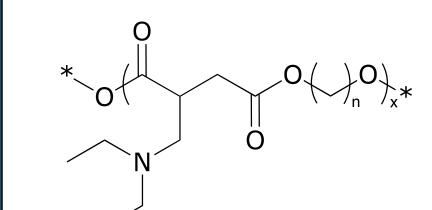
Use of disposable plastic and coatings


- 9 billion tons of plastic manufactured globally in 2023
- ~50% of manufactured plastic is used for single-use purposes




- Polymeric coatings have a significant presence in the commercial and industrial sectors
 - Global coatings market volume estimated to be 26.5 billion liters worth in 2009


Related concerns of plastic and coating use



20.00 g scale

20.00 g scale

2.00 g scale

Reaction Scale	Mn	Mw	Polydispersity (Đ)
2.00 g	6409	8770	1.368
20.0 g	425	501	1.178

4. Results

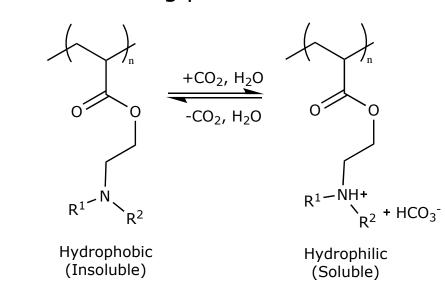
Reaction M	In Mw	Polydispersity (Đ)
------------	-------	-----------------------

- Persistent particles known as microplastics end up in the environment Microplastics cause harm to aquatic life and humans
- Coatings currently available are often lacking in performance (water-based) or use organic solvents as the bulk solvent (solvent-based)
 - Both coating types also result in persistent particles in the environment

2.00 g scale

2.00 g	2498	2723	1.090
20.0 g	523	638	1.221

Addressing the concerns related to plastics and coatings


• The use of polymers that can degrade under specific conditions can offset microplastic contribution • Hydrolysis is an example of chemical degradation that can facilitate polymer breakdown

Degradation

) - <u>)</u> - <u>)</u> -

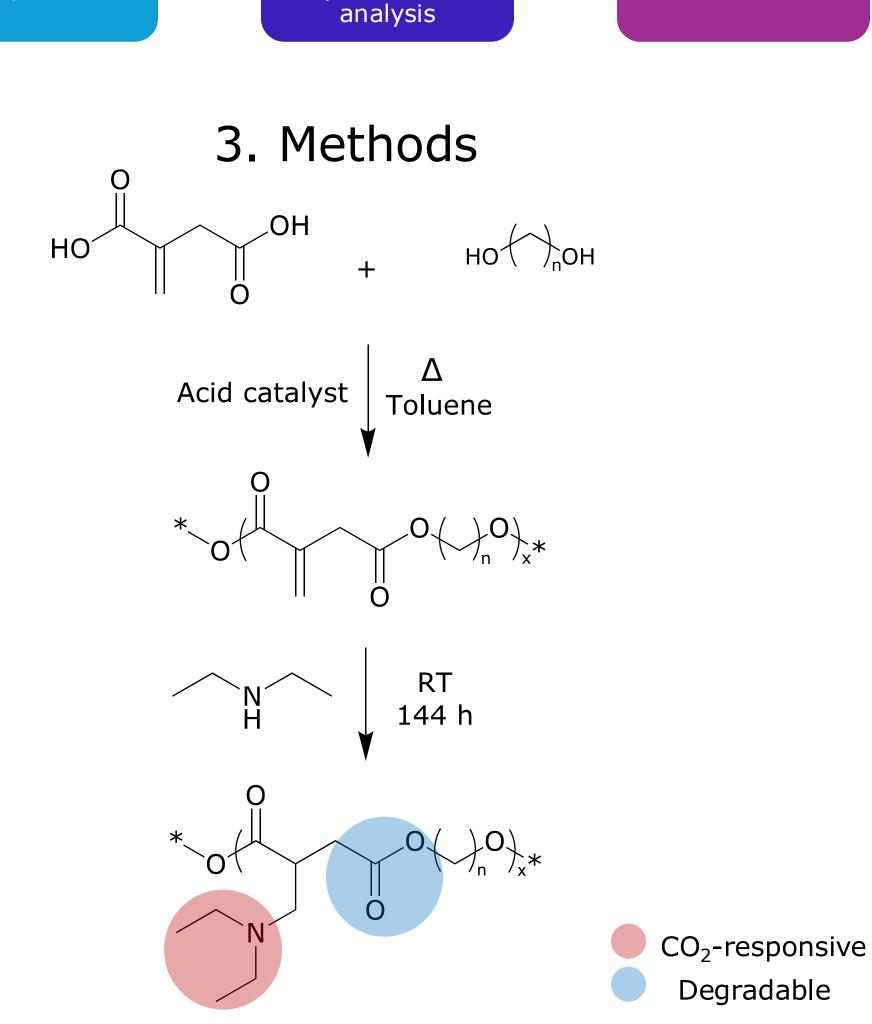
• The use of CO₂-responsive polymers allows carbonated water to be used as the bulk solvent

 Hydrophobic nature of the polymer in a neutral state offers superior coating performance

2. Goals of Research

Perform degradation and CO₂responsiveness tests for qualitative and quantitative

Tailor polymer properties for intended application


- 2 coats • 24 h drying time

 $+ CO_{2}$

• Droplet tests with DI water

- 24 h after droplet test
- Whitening can be seen on wood after applying water droplets to a wood surface

coated with polymer solution from 20.0 g scale batch

Molecular weight of the polymer is likely too low to achieve a hydrophobic coating upon surface application

5. Conclusions

- Condensation polymers bearing esters and tertiary amines can be synthesized using proposed method
- Scaling up the reaction results in a decrease in molecular weight up to ten-fold
- Coating performance was poor, but may be • improved by increasing molecular weight of the polymer

6. Future Work

- Adjust experimental set-up to achieve a higher molecular weight polymer
 - > Use a mechanical stirrer to improve reaction kinetics
 - Monitor reaction temperature throughout the reaction to ensure reflux is maintained
 - Monitor progress of polymerization via acid value

7. Acknowledgements

- Dr. Philip Jessop
- Dr. Michael Cunningham
- Dr. Tobias Robert
- Jessop Group members
- Cunningham Group members

Fraunhofer

8. References

Argawal, S. Macromol. Chem. Phys. **2020**, 221, 2000017. Bulian, F.; Graystone, J. 1st ed.; Elsevier: Amsterdam, 2009. Chamas, A. et al. ACS Sustain. Chem. Eng. 2020, 8 (9), 3494-3511. Ho, J. et. al. Green Chem. **2018**, 20 (8), 1899–1905.

Kaushal, J. et al. Clean. Eng. Technol. 2021, 2, 100083. Lena, J.-B. et al. ACS Sustain. Chem. Eng. 2023, 11 (38), 13974-13987.