Excited State Bond Homolysis of Vanadium(V) Photocatalysts for Alkoxy Radical Generation Alexandra T. Barth⁺, Austin J. Pyrch⁺, Conor T. McCormick, Evgeny O. Danilov, and Felix N. Castellano^{*} Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States

NC STATE UNIVERSITY

Motivation: Exploiting Ligand-To-Metal Charge Transfer for Bond Homolysis

LMCT photoredox catalysts employ inner-sphere bond homolysis to generate reactive open-shell species. Several features differentiate unimolecular LMCT mechanisms from bimolecular MLCT single-electron transfer:

- (1) short-lived (~picoseconds) excited states participate in catalysis to circumvent diffusional limitations;
- (2) metal and substrate bind directly to enable chemoselective bond homolysis;
- (3) and reactivity is dictated by bond dissociation free energy (BDFE) values, independent of metal and substrate redox potentials.

LMCT activation enables targeted bond homolysis photochemistry of first-row earth-abundant elements, cleaving σ or $\sigma+\pi$ donor interactions of substrates. Alkoxy radicals cleave C–C bonds via β scission for use in chemical synthesis and biomass valorization.

Alcohol Prefunctionalization and β -Scission of Secondary Alcohols HOR 3 h, 25 °C \checkmark 2.1 equiv 87% VO(HQ)₂OR 60% Vanadium(V) complexes are readily accessed by in situ oxidation of the vanadium(IV) acetylacetonate precursor under aerobic conditions, affording a six-coordinate product photochemistry in these molecules. with coordinated alkoxide groups.¹

¹ Blair, A. J.; Pantony, D. A.; Minkoff, G. J. J. Inorg. Nucl. Chem. **1958**, 5, 316–331.

Evaluate the Ground State Electronic Structure

Species	¹(1e → 3e)		$^{1}(2e \rightarrow 4e)^{b}$		¹ (2e → 3e) ^b		$^{1}(2e \rightarrow b_{2})^{b}$	
	ε _{λ,max} с	$\lambda_{abs,max}^{\qquad \qquad d}$	ε _{λ,max} с	$\lambda_{abs,max}^{\qquad \qquad d}$	ε _{λ,ma} c	$\lambda_{abs,max}^{\qquad \qquad d}$	^c د λ,max	$\lambda_{abs,max}^{\qquad \qquad d}$
1 ^{iPr}	43380	242	6046	304	5200	369	3080	510
1 ^{Cy}	45202	242	6848	305	6223	369	3560	511
1 ^{nBu}	44272	242	6016	304	5435	366	3460	508

Absorption spectra in MeCN (295 K) resolves as two lowlying LMCT transitions and two intraligand transitions.

	OH 1 ^{iPr} (ca. RT, Aml	1 mol %) bient O ₂	+ other products		
Entry	Solvent	Conditions	Time (h)	Conv. (%)	
1	Toluene	60 °C	24	0	
2	Toluene, 2% Et ₃ N	h <i>v</i> (390 nm)	24	19	
3	MeCN	h <i>v</i> (390 nm)	48	22	

Upon UV-A photoactivation, these complexes catalyze the β scission of secondary alcohols. We aim to understanding the photoactivation mechanism that initiates V-O homolysis

Acknowledgements and Financial Support

We would like to acknowledge all the individuals and funding agencies who have contributed to these research findings. This work was supported by the Office of Basic Energy Sciences of the U.S. DOE, through Grant No. DE-SC0019370. We acknowledge the computing resources provided by North Carolina State University High Performance Computing Services Core Facility (RRID:SCR_022168).

@CastellanoGroup @CastellanoGroup

