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Objective

 To develop a metal-organic framework (MOF) with built-in quinones
that will serve as a porous cathode material for Mg ion batteries to
trap electrons from electrolytes and make such electrons available
during the charge-discharge process in an electrochemical cell
reaction.

Overview

 Lithium metal batteries have limitations, but research on carbon
composites offers a hopeful path forward for battery development.
(Barbosa et al., 2021).

Global demand for lithium-ion
batteries will be over 3,100 GWh
in2030 -
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Fig 1: Global demand for Li-ion batteries (LIBs) and Lithium batteries failure mechanism
(Wang et al., 2019)
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Fig 4: Examples of (a) Pyrene-based organic frameworks (Maldonado et al., 2020) & (b) metal-organic frameworks (MOFs) (Bhakat et
al., 2023).

Results

 Rechargeable magnesium batteries (RMBs) are vital for sustainable
energy, with improved performance and safety over lithium batteries,
though facing challenges like low cathode intercalation rates and
electrolyte issues.
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Fig 2: Advantages of Magnesium batteries over Lithium batteries as well as magnesium
battery’s current picture and missing pieces of the puzzle (Dominko et al., 2020).

Methods

* For the realization of high-performance batteries, the search for
suitable cathode materials and their optimization is of crucial
importance.

 Quinones are of special interest for application as cathode material
due to their multi-electron redox activity, high energy density, and
electronic stability.

 Pyrene-4,5,9,10-tetraone (PTO) is an outstanding quinone, as all four
carbonyl positions can be utilized for the redox process for the uptake
of four metal ions (e.g. Mg?*) ions with a high operating voltage and a
theoretical capacity as high as 409 mA h gL.
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Fig 3: Reaction of PTO with Mg?* (Ding et al., 2022).

* Pyrene quinones are crucial for creating important fused-ring
polyaromatic compounds.

* By harnessing the unique redox property of PTO, this study aims to
immobilize PTO by investigating synthetic strategies for new pyrene
tetraone derivatives that will serve as a porous cathode material for
Mg ion batteries to trap electrons from electrolytes and make such
electrons available during the charge-discharge process in an
electrochemical cell reaction.

 We present a synthetic method for producing highly brominated PTO
(i.e. tetra- to hexa- bromo pyrenetetraone) which are expected
intermediate compound in the synthetic pathway for the proposed
guinone-based metal-organic framework (MOF).
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Fig 5: Proposed Pathway for the Synthesis of Pyrene tetraone-derived organic
framework.
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Fig 9: (a) *H NMR; (b) 13C NMR; (c) LC-MS QTOF Analysis; and (d) Sample of 4,5,9,10-tetramethoxypyrene.
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Fig 13: 'H NMR Analysis of suspected 1,2,3,6,7,8-
hexabromopyrene-4,5,9,10-tetraone

Fig 10: *H NMR Analysis of 1,3,6,8-tetrabromopyrene-4,5,9,10-
tetraone

Conclusion & Future Directions
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Fig 6: Synthesis of 4,5,9,10-tetramethoxypyrene (TMP).
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Fig 8: Synthesis of 1,2,3,6,7,8-hexabromopyrene-4,5,9,10-tetraone.

Improved isolated yield (up to 77%) of 4,5,9,10-tetramethoxypyrene (TMP) with high purity
product after a simple filtration process, without the need for extraction and column
chromatography was achieved.

Optimized purification process for 1,3,6,8-tetrabromopyrene-4,5,9,10-tetraone in progress.
Synthesis of the other pyrene tetraone derivatives will be carried out and analyzed appropriately.

The resulting pyrene tetraone derivatives can be further used as the building blocks in the
synthesis of extended Polyaromatic Systems (e.g. proposed MOFs as cathode materials for Mg ion
rechargeable batteries).
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