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❖ The goals of this study included i) extending the SAR characterization of known 
Pks13 inhibitors, ii) determining the antimycobacterial activity with trehalose 
conjugates and iii) testing a Trojan horse strategy of enhancing compound uptake and 
efficacy by exploiting endogenous trehalose uptake pathways.

❖ However, trehalose-Pks13 inhibitor conjugate 10, while active against Msmeg, did not 
rely on import into the cell via the plasma membrane-associated trehalose transporter, 
LpqY-SugABC. 

❖ Interestingly, we discovered compounds that gained antimycobacterial activity or 
maintained activity while eliminating toxicity upon addition of trehalose (12,13). This 
will lead to new drug development with high efficacy and less off target effect.  
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❖One of the challenges in developing new drugs to target Mtb is the unique 

structure of its cell wall, which includes a distinctive outer membrane known as 

the mycomembrane.

❖One potential strategy to overcome this permeability barrier involves utilizing 

endogenous receptors on the bacterial surface that facilitate the uptake of 

nutrients or cofactors. This approach has shown promise using siderophore-linked 

compounds using Trojan-Horse drug delivery strategy.

❖In the present study, we envisioned a strategy in which conjugation of a 

chemotherapeutic for Mtb, specifically a Pks13 inhibitor to trehalose could 

potentially enhance its entry into mycobacteria. This process may be facilitated 

by the PPE51 transporter,or it may directly access to cytoplasm  via the LpqY-

SugABC transporter, as illustrated in Figure 2. 
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❖Mycobacterium tuberculosis (Mtb) has unique cell wall, which forms a  significant 

permeability barrier to drug transport, primarily made out of Mycolic acids (MAs).

❖In this study we aimed last step of MA biosynthesis by targeting Pks13 pathway and 

trehalose utilization pathway.

❖This research highlights the importance of Trehalose as a drug delivery method which 

can enhance compound uptake and efficacy by “Trojan horse” drug delivery strategy.

❖We found that, in some instances, trehalose served to significantly enhance either the 

antimycobacterial potency or improve selectivity (by reducing toxicity) of the Pks13 

inhibitors.

Figure 1: Graphical abstract of current research
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Compound

number

MIC (µM) IC50

SI (Mtb CDC 

1551)

Msmeg 

mc2 155

Mab

390S

Mtb

CDC 

1551

J774 HepG2 J774 HepG2

2 1.8 1.7 5.8 NT NT >34.6 >34.6

10 8.0 118.6 14.6 NT NT >13.7 >13.7

4 NA NA NA NT NT - -

11 98.0 200 5.3 NT NT >38.1 >38.1

6 13.0 62.7 1.8 8.19 34.5 4.5 19.0

12 102.2 NA 77.3 NT NT >2.6 >2.6

8 12 NA 0.8 27.7 53.2 33.1 63.3

13 12.6 >200 0.7 NT NT >303 >303

NA= Non-Active NT= Non-Toxic
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Scheme 1: (A) Synthesis of ACP domain inhibitor by 

thiophene scaffold and TE domain inhibitors by 

benzofuran scaffold (B) Synthesis of 6-azido trehalose (C) 

Synthesis of Pks13-trehalose conjugates by click chemistry
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Figure 5: HPLC traces of final compounds 

Time 

(min)

Acetonitrile 

(0.1% TFA) %

Water (0.1% 

TFA) %

0-5 5 95

5-10 40 60

10-15 40 60

15-20 100 0

20-25 100 0

Column:   RESTEK ultra C8 5µm 

150x10.0 mm2

Mobile phase: Acetonitrile (0.1% TFA) 

and H2O (0.1% TFA)

Flow rate: 4 mL/min

Injection volume: 500 µL

Planktonic growth inhibition Results

Table 1: MIC and cytotoxicity data

Figure 6: MIC curves for Mtb

Figure 7: Cytotoxicity dose-response curves 

Figure 2: Pks13 and Trehalose utilization pathway

Figure 3: Crystal structure of Thioesterase (TE) domain3 Figure 4: Crystal structure of Acyl carrier protein (ACP) domain5
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