Enhancing latex-based coatings with carboxylated cellulose nanocrystals

Carolina Ordóñez¹, Marc A. Dubé², Emily D. Cranston³, Marianna Kontopoulou¹, Timothy Morse⁴, Gary A. Deeter⁵, Pascale Champagne⁶ and Michael F. Cunningham¹

¹ Department of Chemical Engineering, Queen's University, Kingston, ON, Canada ² Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada ³ Department of Wood Science and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada ⁴ Anomera Inc., Montreal, Quebec, Canada

⁶ Energy Mining & Environment Research Centre, National Research Council, Montreal, QC, Canada

BACKGROUND

Emulsion Polymerization

- Improves sustainability by reducing volatile organic compound use [1-2]
- Emulsion polymer market has shown yearly increase in its demand [3]
- Provides facile route to polymer colloid preparation

Carboxylated Cellulose Nanocrystals (cCNC)

- Reinforcing agents and rheological modifiers
- High aspect ratio, tunable surface chemistry and high mechanical strength
- Lower cost than other nanoparticles and very low loadings can improve existing products [4]

OBJECTIVE

Use cCNCs to tailor polymer properties and make more sustainable latex-based coatings

METHODS

Formulation

COMPONENT	SEED	FEED	TOTAL
Dowfax 2A1	0.53 phm	0.38 phm	0.9 phm
APS	0.25 phm	0.25 phm	0.5 phm
NaHCO ₃	0.65 phm	0.65 phm	1.30 phm
cCNC	0 phm	0.3 – 1.0 phm	0.3 – 1.0 phm
Water*	72.9%	27.1%	55%
Monomer (PE)	5%	95%	45%
Monomers	BA 51% - MMA 48% - AA 1%		
[cCNC]	0.3, 0.6 and 1.0 wt.%		

*Water percentages varies with the cCNC addition phm: parts per hundred parts monomer PE: pre-emulsion

Set-up

Relation to Green Chemistry

Water-based polymerization methods provide a more sustainable alternative to traditional solvent-based coatings. Furthermore, cCNC serves as an eco-friendly substitute for petroleum-derived fillers.

RESULTS

Monomer Conversion

Ö 60% Control 40% **--**0.3 wt.% cCNC ← 0.6 wt.% cCNC 20% → 1.0 wt.% cCNC Time (min)

Particle Size Evolution

Viscosity → Latex

Water Absorption → Dried Films

CONCLUSIONS

- The incorporation method maintains constant latex particle size
- Addition of cCNC after one hour of reaction avoids influencing the nucleation phase, and reduces/eliminates coagulum
- Latex viscosity increases without evidence of filler network
- Enhanced stiffness and increased elastic behaviour, suggesting polymercCNC interactions
- Increase in cCNC concentration decreased water absorption of the films
- cCNC enhances the mechanical properties of a commercial latex formulation with loadings as low as 0.3 phm

REFERENCES AND ACKNOLEDGMENTS

- [1] P.A. Lovell and M.S. El-Aasser, Emulsion polymerization and emulsion polymers. Wiley, 1997.
- [2] P.A. Lovell and F. J. Schork. Biomacromolecules 2020 21 (11), 4396-4441.
- [3] Grand View Research: Emulsion polymers market size, share & trends analysis report by product, by application and segment forecast, 2019-2025.
- [4] G. Delepierre, O. M. Vanderfleet, E. Niinivaara, B. Zakani, and E. D. Cranston, Langmuir, 2021 37 (28), 8393-8409.

A big thanks to the partner scientists for their support and fruitful discussions. Special thanks to the Cunningham group for the guidance in the lab.

