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ABSTRACT

The development of sustainable materials needs to take into account the chemicals that appear at different stages of material synthesis, 
processing, and manufacturing, including molecular precursors, solvents, and PFAS containing compounds. We describe an accelerated 
data-driven framework for designing safer material chemistries that also accounts for the impact of chemicals to ensure technical 
functionality and provide a holistic approach to sustainability.

Scientific research increasingly demonstrates that chemicals and materials essential for everyday products threaten natural systems and 

human health. Transitioning to sustainable, circular, and low-carbon economies depends critically on having safer chemicals available. We 

propose that materials scientists should also account the impact of the health hazards of chemicals associated with the synthesis, process-

ing, and manufacturing of materials. These include molecular precursors for synthesis of new materials chemistries and chemicals used in 

various stages of materials processing and manufacturing such as solvents and persistent, accumulative, and highly hazardous. Per- and 

polyfluoroalkyl substances are examples of harmful chemicals that pose health and environmental risks. A major challenge is finding safer 

yet functional alternatives that also the meet necessary performance requirements in sustainable materials design and development. The 

exploration space to discover these is prohibitively large to explore. Hence, we are at a critical inflection point and a paradigm shift is needed 

to include the development of safer chemicals as part of the equation to accelerate the adoption of safer and more sustainable chemical 

materials. Using such chemicals as an example, we describe an accelerated data-driven framework for designing safer material chemistries 

that ensures technical functionality and provide a holistic approach to sustainability

Keywords  artificial intelligence · chemical substitution · environmentally benign · lifecycle · sustainability · toxicity

Discussion 
To create a safer and sustainable materials ecosystem rapidly, one must address many competing and conflicting environmental, economic, 

and social consequences, requiring new paradigm for materials research. We argue that materials informatics provides a framework to meet 

an expanded definition of materials performance that includes multiple metrics of functionality and the safety of chemicals used in materials 

synthesis, processing, and manufacturing. The power of this new research paradigm for materials innovation lies through discoveries that make 

it more feasible to address environmental and social impacts at the front end of material discovery, design, and deployment.
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Chemical pollution reaches inflection point
Over the last five years, a series of groundbreaking reports 

have documented growing evidence that we have reached a 
tipping point with chemical pollution’s impact on people and 
the environment. These reports reflect major trends that have 
emerged over the last few decades, including a 2022 study by 
Persson et al.1 that chemical pollution has crossed a “planetary 
boundary.” Chemical exposure and presence in the environ-
ment have significantly upset the balance required for the 
planet to maintain human life. This is the fifth of nine plan-
etary boundaries that are in jeopardy of being crossed along 
with global heating, loss of biodiversity, the degradation of 
natural habitats, and the overabundance of nitrogen and phos-
phorus pollution. The study advocated for urgent measures to 
decrease chemical pollution by promoting circular economies. 
The authors recommend taking “urgent action to reduce the 
harm associated with exceeding the boundary by reducing the 
production and releases of novel entities,” noting that even so, 
the persistence of many novel entities and/or their associated 
effects will continue to pose a threat.1

At the root of the problem is the growing reliance on over 
350,000 synthetic chemicals derived primarily from fossil 
fuels that are used ubiquitously in products, infrastructure, 
and industrial systems for modern-day society. Persson et.al1 
noted that since 1950, there has been a 50-fold increase in 
chemical production, and it is projected to triple again by 
2050. Fossil fuels are the fundamental building blocks of over 
96% of manufactured goods for our economy.2 For example, 
90% of downstream organic chemical production is made from 
seven essential petrochemicals including methanol; olefins 
like ethylene, propylene, and butadiene; and aromatic com-
pounds such as benzene, toluene, and xylene—which entered 
the market in the 1940s and 1950s.3

A 2017 study estimated that the global economic costs 
of environmental chemical exposures could surpass 10% of 
the world’s GDP, totaling approximately 11 trillion dollars.4 
Dr. Shanna Swan, a prominent expert in environmental and 
reproductive epidemiology, has researched and established a 
connection between falling sperm counts, exposure to endo-
crine disrupting chemicals (EDCs), and the fertility crisis.”5 
Public awareness of the adverse impacts caused by materials 
and hazardous chemicals is rising rapidly with the increasing 
visibility of plastic pollution in oceans and PFAS in drinking 
water6 As documented by Lane et.al,7 hundreds of studies have 
been identified ‘overburdened communities’ that suffer from 
environmental injustice and serve as the frontline facing the 
burden of unsafe chemicals and industries. They argue “Green 
chemistry must aim to “simultaneously designs for functional 
performance and sustainability, including multifaceted envi-
ronmental, economic and social considerations.” In this arti-
cle, we advocate that the design of new materials must take the 
same approach and include the hazard impact in all aspects of 
materials development in parallel to achieving its functionality.

Solutions to these problems will require a significant 
transformation in how we design and develop materials for 

manufacturing and products. Embedding the development of 
inherently safer and greener chemistries and materials as a 
critical component of our transition to sustainable, circular, 
and low-carbon economies will help scale solutions needed to 
address the problems of chemical and plastic pollution.

A paradigm shift in material innovation is needed
Materials and chemicals are central to every technology (e.g., 

photovoltaics, batteries), and demands for sustainable materials 
that are based on safer and benign-by-design chemistries are ris-
ing in response to the widespread impacts of chemical pollution. 
Companies, investors, governments, and environmental leaders 
have demonstrated that finding safer substitutes for chemicals 
of concern used in high volumes, such as problematic flame 
retardants, plasticizers, and solvents, is critical to economic and 
technological viability.8 But the availability of safer materials for 
many applications is not at scale to meet market demand. Green 
chemistry holds great promise, but from an environmental lens, 
is often not prioritized at the materials design level unless there 
are regulatory and/or industry restrictions. On average, it takes 
years to transition to new high-performance materials, and in 
many cases, those new materials might be ‘regrettable substi-
tutes’ in that they pose other human health and environmental 
risks. New science-based solutions are needed to analyze soci-
ety’s complex reliance on hazardous chemicals and rapidly cre-
ate innovative solutions.9,10

In the movement to create new sustainable materials for a 
low-carbon economy, often overlooked in material design are 
the hazards of the chemical building blocks of these materials. 
Addressing the inherent hazards of chemicals is core to the 12 
Principles of Green Chemistry, leading figures, Paul Anastas and 
John Warner, emphasize in their foundational book, that Green 
chemistry is fundamentally about designing chemicals and pro-
cesses that reduce or eliminate hazards at every stage of their 
development.11 And addressing the inherent hazards of materials 
is core to the 12 Principles of Green Engineering: “Designers 
need to strive to ensure that all materials and energy inputs and 
outputs are as inherently nonhazardous as possible.”12 As mate-
rial engineers design new materials for a low-carbon economy, 
it is also essential that these materials be safer and healthier for 
people and the planet.

Companies and environmental leaders have made progress 
in differentiating materials and chemicals in the marketplace 
by setting priorities around health and environmental impact 
data. For example, Apple partnered with Clean Production 
Action to implement a hazard assessment tool, the Green-
Screen® for Safer Chemicals, which rates chemicals on a 
scale of 1 to 4, from most hazardous to least, according to 18 
distinct human health and ecotoxicity criteria.13 Clean Produc-
tion Action developed the tool in recognition that guidance 
was needed to define the criteria for inherently safer chem-
istries. Apple collaborated with Clean Production Action to 
establish the GreenScreen Certified® standard, a publicly 
accessible tool designed to evaluate and encourage the use of 
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safer chemicals in cleaners and degreasers. By applying both 
GreenScreen® and the U.S. Environmental Protection Agen-
cy’s Safer Choice criteria for thorough assessment, Apple suc-
cessfully transitioned all its final assembly sites to safer clean-
ing and degreasing alternatives.14 In some cases, companies 
reformulated their products to remove chemicals of concern 
to meet GreenScreen Certified® requirements, including the 
removal of PFAS from product formulations. For the most 
part, however, this process identified better materials avail-
able today but did not redefine innovation and discovery for 
new materials to enter the marketplace.

Differentiating chemicals and materials in the marketplace 
based on defined environmental and human health metrics is 
a critical step forward in addressing the chemical pollution 
problem and creating sustainable materials. But this approach 
alone will not create the change needed to scale solutions that 
reduce chemical pollution and restore planetary boundaries. 
Bringing tools like the GreenScreen® that organize and aggre-
gate complex environmental and human data into the front end 
of material design and discovery will help material scientists 
make better and more sustainable design choices. But this can-
not be done in isolation; the environmental data need to be 
relational to and integrated with the technical and economic 
data that drive material design and discovery.

A new approach is essential—one that leverages artificial 
intelligence (AI) and big data to expedite the design and crea-
tion of materials and chemicals that not only fulfill engineer-
ing and technical requirements but are also cleaner, safer, and 
more sustainable. This can be achieved by integrating both 
technical and environmental considerations at every stage of 
designing, developing, and utilizing materials and chemicals. 
In essence, we need to innovate with more intelligent chemical 
solutions. This means materials and chemicals that are benign-
by-design, which entails designing materials and chemicals 
with inherent safety, tailored for specific functionalities, 
by proactively considering hazard impacts across all stages 
from, synthesis to processing and ultimately recycling. It also 
involves understanding how material and chemical choices at 
various production stages interact. To foster safer chemistries, 
we need a comprehensive understanding of the molecular 
mechanisms driving environmental and human toxicity, aim-
ing to redefine performance standards. This broader approach 
integrates material functionality with the potential hazards 
embedded in synthesis and fabrication processes Fig. 1).

One of the key challenge in embracing this holistic method 
is the diverse and disconnected nature of data-intense research 
in chemistry, environmental science, toxicology, and materi-
als science that is siloed across scientific communities, indus-
try, and other stakeholders.  We need new and innovative 
approaches that take advantage of advances in AI and data 
sciences to coalesce information from decades of research on 
chemistries, materials, and their environmental and human 
health impact.14–17 Aside from organized databases such as 
PubMed, the harvesting of information has been revolution-
ized in the last few years with the advent of techniques such as 
Large Language Models that can help to gather large volumes 

of information from both text and graphics.18 Scientists will 
use these aggregated data sets and tools to guide and inform 
the development of smarter chemistries for new materials 
and chemicals. This approach, grounded in rational design 
and data-driven tools, holds promise for expediting the dis-
covery of materials that achieve both technical functionality 
and minimal hazard impact. We define ’rational design’ as a 
method that avoids trial-and-error, instead developing materi-
als through predictive insights into the fundamental science 
that dictates material performance.

To establish a rational design paradigm, we need to bring 
information on why a chemistry is hazardous together with a 
robust information infrastructure to look for other potentially 
safer chemistries. We need to deploy a new set of multifaceted 
data analytical tools that can unravel the multiscale relation-
ships across the entire system (from molecular structure to 
engineering behavior), coupled with an understanding of the 
mechanisms that control behavior, and achieve this within 
a reasonable timeframe. This requires embedding computa-
tional and experimental tools that are capable of building and 
interrogating a robust information infrastructure to provide 
guidelines for materials/chemistry selection, design, and dis-
covery. Hence, we need to integrate a benign-by-design search 
process for developing new chemicals and materials chemis-
tries that also avoid ‘regrettable substitutes.’19–23

This approach represents a paradigm shift in material design 
and discovery that can accelerate the development of inherently 
safer and better-performance materials. It is based on new mul-
tifaceted, data analytical tools that fuse knowledge and informa-
tion that is currently disaggregated and not readily accessible. 
It utilizes data-driven screening methods capable of estimating 
potential chemical toxicity and guiding the design of safer alter-
natives, all while preserving the material’s chemistry and func-
tionality for its intended engineering application..

Building the toolkit for a rational design
To understand the need for a toolkit, consider for instance 

the problem that we face with PFAS. Polyf luoroalkyl sub-
stances (PFAS) are chemicals characterized by having at least 
one carbon atom fully f luorinated. They possess important 
properties such as chemical and thermal stability, and the 
ability to repel water and oil, PFAS compounds are used in 
many industrial and commercial products. However, due to 
their high chemical resiliency, they do not break down in the 
environment; thus, the phrase ‘forever chemical’ is attributed 
to PFAS chemistry. PFAS also bioaccumulate in the environ-
ment and are chemicals that raise significant concerns because 
of their environmental and human health hazards.

PFAS take innumerable forms and each compound has 
a complex network of relationships within the PFAS family. 
Hence, as the list of new substances in the PFAS family grows 
rapidly, the features that distinguish the structure-functional 
relationships of different chemistries are not easy to identify. 
Establishing clear criteria for classifying PFAS compounds is 
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critical for guiding the search for new and safer chemistries or 
the modifications of existing chemistries. The work in apply-
ing machine learning involves results with respect to available 
data.24,25 The interpretation of such models are in fact based 
on understanding the chemistry and that helps to understand 
the level of confidence of a machine learning base result. This 
provides a foundation for the next generation of models, and 
identifies where data needs to be collected.

In the search for safer substitutes, we need to address the 
following questions:

1.	 Can we discover fundamental chemical/structural criteria 
at the molecular scale that we could use to find alterna-
tives?

2.	 From the information in #1 above, can we identify hid-
den or difficult to identify chemical characteristics at 
the molecular level that would suggest what features we 
should avoid, or which fundamental chemistry should be 
changed?

3.	 Are there completely different classes of chemicals that 
can serve as substitutes for existing PFAS applications? If 
there are, then we need to expand an already massive 
chemical search space to an almost infinite one.

Although there is extensive work on the toxicological 
assessment of chemicals,26 the question that we seek to address 
is how do we use that information to find safer alternatives in a 
timely manner without compromising technical functionality, 
cost, availability, and other key factors? Every decision that we 

make may have consequences. For example, a less hazardous 
material might be extremely rare. A chemical that degrades 
more slowly may not be as efficient. A less hazardous solvent 
used in the manufacturing process could affect the final prod-
uct’s longevity.

Informatics-based materials discovery paradigm has the 
potential to significantly advance knowledge of materials and 
chemical safety. For example, by analyzing key molecular fea-
tures, we can

•	 Select safer alternatives to hazardous chemicals currently in 
use,

•	 Achieve highly precise knowledge of the combinations of 
chemistries, molecular design characteristics, processing 
strategies, and

•	 Control variables that will most efficiently and rapidly pro-
vide the desired results.

In addition to transforming hazard assessment approaches, 
the new paradigm will foster stronger convergence between data 
science and environmental science, toxicology, chemistry, and 
materials science, leveraging this knowledge to speed up the 
shift toward safer materials and clean production processes.

It is important to distinguish between materials chemistry 
and the chemicals that are used to make materials (Fig.  2). 
Materials chemistry addresses the final product, such as a bat-
tery, including how the product is used, how it degrades over 
time, and ultimately how it is decommissioned. For example, if 
hazardous materials are in the product, are they encapsulated? 
How much hazardous material persists after the product reaches 
the end of its expected lifespan? We also need to be concerned 
about the chemicals used to make materials and address a priori 
the hazards of the precursor chemicals involved in materials syn-
thesis.27 For example, are there hazardous solvents required for 
manufacturing, even if these solvents never end up in the final 
product? Is there a hazardous process involved in synthesizing 
any of the needed materials?

Our goal: find better starting points
In the following section, we discuss an approach for informa-

tion/data gathering, harvesting, and sharing that will provide 
the foundation for identifying pathways for choosing options that 
fulfill both performance needs and safety criteria. This approach 
will also pinpoint key gaps in models and experiments that must 
be addressed to move beyond trial-and-error methods, paving 
the way for designing safer and more sustainable materials and 
chemicals. Our goal is to find better, ‘smarter’ starting points 
that can most quickly identify the most promising pathways for 
improvement. By improving our ability to predict chemical per-
formance, we will quickly discover which pathways we should 
pursue first in order to have the greatest chance at success.

What we need to do are the following:

Figure 1.   Meeting both sustainability and performance goals at the 
outset of chemical and materials discovery requires a comprehensive 
understanding of the multiscale impact of molecular scale chemistry on 
both targeted functionality as well as its health, environmental, and social 
footprint.
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•	 Identify foundational ‘chemical design rules’ that can guide 
the selection, search, and screening of new chemistries that 
meet the multiscale benign-by-design objectives.28

•	 Aggregate information from varied sources, including quan-
titative physico-chemical models, environmental, toxicol-
ogy, and clinical data, as along with descriptive and heuris-
tic insights to build a broad, multidimensional evidentiary 
portfolio on the chemicals of interest, and simultaneously 
identify gaps in knowledge.29

•	 Extract features or ‘signatures’ that capture the complex-
ity of data correlations gathered from the above-mentioned 
steps to serve as guideposts for navigating the information 
landscape to search for alternatives and/or discover pathways 
for new chemistries.30

•	 Embed this entire knowledge base into a shared information 
system that can serve both as a repository and as an ‘atlas’ 
for identifying new chemistries and pathways for discovering 
new and ‘smarter’ chemistries.31,32

Identify: discovering multiscale structure‑function relationships

The high degree of complexity in structure-function relations 
makes it difficult to extract ‘design rules’ for selection and sub-
stitution. Hence, we need a strong foundational understanding 
of multiscale structure-function relationships on toxicity, and 
we need to identify those relationships that track hazard impacts 
concurrently to chemistry and their engineering functionality.

Establishing criteria for selecting alternatives is difficult 
because the underlying chemistry (at the molecular level) that 
explains a chemical’s behavior (functionality, toxicity, etc.) is 
very complex and involves many factors. There are multiple 
factors at the molecular level that define the ‘signature’ of a 
chemical compound. Some of these factors contribute to and 
determine the level of the chemical’s toxicity. Hence, we need 
this molecular-level information to understand why a chemical 
is hazardous so that we can find alternatives. Hence, the accel-
erated design of materials is driven by the rational selection of 
molecules based on an understanding of structure and properties 
and the mechanisms that control behavior (properties).

An important step in capturing this complexity is to take 
advantage of machine-readable representations of molecular 
structure that can encapsulate the numerous relationships that 
link molecular chemistry to the multitude of measures repre-
senting its functionality and toxicity. This enables us to develop 
an AI approach to detect complex patterns in the multidimen-
sional data space that links structure to function. We can detect 
patterns that provide critical clues on what aspects of structure 
govern properties; information that otherwise would be missed 
from empirical observations.

Machine learning has been highly effective in analyzing exist-
ing data to uncover significant patterns in existing data on the 
properties of the family of PFAS molecules, (including bioactiv-
ity, bond strength, and sources) and used to make predictions.33

Many studies use supervised machine learning methods, 
where molecular structural information serves as input fea-
tures and known properties act as labels. However, a major 
challenge is that there are far more PFAS compounds with 
unknown chemical structures than those with known proper-
ties. Additionally, the number of PFAS with known proper-
ties is significantly less than those with identified structures. 
Conversely, unsupervised learning—an exploratory machine 
learning approach capable of uncovering hidden patterns or 
groupings in data without needing labels—has not been fully 
utilized in PFAS research.

We have used visualization methods to overcome this problem 
by presenting complex information in a 3D format to uncover 
underlying patterns or groupings in data without the use of any 
labels.34 For example, we have compiled extensive information 
on chemical compounds, including PFAS, by leveraging AI, 
chemical modeling, and data analysis to develop a ’data atlas’ 
that maps the intricate chemical landscape, enabling exploration 
and insights into property relationships. This PFAS-Atlas can be 
used for predicting and estimating fundamental physical proper-
ties of PFAS chemicals that have not yet been measured; uncover-
ing hierarchical patterns in existing classification systems; and 
integrating data from diverse sources. The Atlas also provides a 
common platform to compare different chemicals with respect 
to their toxicity.

Developed using open-source data, the PFAS-Atlas is adapt-
able to updates as PFAS classification methods advance and 
evolve. Changes can be seamlessly integrated into the classi-
fication program’s source code, ensuring that new classifica-
tion patterns from scientific research are quickly incorporated. 

Figure 2.   It is crucial to comprehend the effects of chemistry at the most 
fundamental level and trace its impact through all aspects of the materials 
design from synthesis to manufacturing to performance and finally, its 
impact on the environmental and health (adapted from M. Rossi, A. Blake, 
The Plastics Scorecard, 2014, p. 1018).
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Additionally, it functions as an inference tool, allowing for rapid 
assessment of the potential functionalities of new PFAS mol-
ecules by comparing them with existing property data.35 Most 
recently, for example, Patlewicz et.al36 shown how the classifica-
tion models can serve as a practical means of guiding toxicologi-
cal testing.

Aggregate: harvesting and gathering diffuse information

Information on toxicity and hazard impact is diverse, sparse, 
and unstructured, and covers all types of data sources; for 
example, toxicology models, clinical data, archived laboratory 
and field data in databases, interpretation of data embedded in 
text and diagrams, to mention a few. The first challenge that 
we face is gathering all this information. The second problem 
is that there are far more chemicals than the known informa-
tion on the toxicity of chemicals. Hence, it is a daunting task 
to build empirical, statistical, and/or physico-chemical mod-
els to establish a predictive framework to rapidly find safer 
alternatives.

While there have been, and continue to be, significant efforts 
to build repositories and databases on chemical safety, the enor-
mous volume of chemicals in use far exceeds the knowledge and 
data that we have on the complex environmental and health haz-
ards associated with these chemicals. Further, a large amount 
of information exists in the form of heuristic information, 
embedded in texts, diagrams, scientific articles, and reports. It 
is critical that we harvest this knowledge, format it as structured 
information, and add it to databases on materials and chemical 
safety. This combined information, together with the tools and 
techniques of statistics and machine learning, then becomes a 
rich resource for physico-chemical modeling and offers a power-
ful framework for the accelerated discovery and property predic-
tions of new chemistries.

Advancements in Natural Language Processing, particularly 
with the advent of Large Language Models, have and Graph-
ics Recognition techniques can aid in converting unstructured 
textual data to encoded variables. Transforming unstructured 
text data into encoded variables enables its use in machine 
learning applications. Natural Language Processing (NLP) 
and Large Language Models (LLMs) offer advanced tools to 
extract targeted information from vast textual corpora, mak-
ing it suitable for input into machine learning paradigms like 
classification or regression. These models can function in both 
context-independent and context-sensitive modes. When con-
text is considered, NLP and LLMs are useful for tasks such as 
sequence classification, question answering, language modeling, 
and translation. LLM-based NLP methods make it possible to 
annotate entire articles and develop classification tools to extract 
relevant keywords. By combining text mining of published litera-
ture—especially for information not found in curated databases—
with chemistry-guided machine learning, we can expedite the 
development of safer and cleaner technologies by predicting 
the chemical impact of material synthesis and manufacturing 
processes.37–39

Extract: accelerating the screening and finding of alternative 
chemistries

The major challenge in screening known chemistries with 
unknown properties is that we are searching for large amounts 
of chemical space with limited experimental data. The question 
is whether we can predict with reasonable confidence the likeli-
hood that a molecule meets multiple criteria that are critical for 
identifying hazard impacts. By combining molecular chemistry 
fundamentals with AI methods, it is possible to create a digital 
signature to identify and search, in an automated fashion, the 
essential molecular structures within a molecule that greatly 
contribute to a chemical’s properties.

This significantly accelerates a rational design approach to 
screening large amounts of molecules where the property infor-
mation space is sparsely populated. As an example, we have dem-
onstrated methods for identifying critical molecular structures 
that significantly influence a chemical’s ability to function as an 
endocrine disruptor.40  This now allows us to accelerate the iden-
tification of physically meaningful ‘digital’ signatures to screen 
and find alternative chemistries.

Embed: enabling an information network for all stakeholders

The vision for the next generation of information infrastruc-
ture must support the FAIR principles for building and establish-
ing databases—Findability, Accessibility, Interoperability, and 
Reusability.41 Our vision for using informatics to design smart 
chemistries is to establish a trustworthy machine-enabled system 
that allows easy access, provides search capabilities, and oper-
ates across communities of stakeholders. To achieve this goal, 
our information infrastructure will have the following capabilities:

•	 Create a data-driven approach to gather and harvest com-
plex information from diverse fields (environmental, health, 
social, economic, chemical, and materials sciences) to guide 
the design of safer materials and chemicals that meet tar-
geted engineering functionality.

•	 Unify multiscale approaches, experimental methods, and 
computational techniques to engineer innovative molecular 
chemistries for smarter chemistries.

•	 Identify approaches for advancing our chemical knowledge to 
achieve high chemical precision derived from the combina-
tion of chemistries; molecular design characteristics; materi-
als processing strategies; and control of those experimental 
variables that will most efficiently and rapidly provide the 
desired result.

•	 Create accessible information for diverse stakeholders, 
including academia, industry, policymakers, and advocacy 
groups.

The FAIR principles are even more relevant and challenging 
for our benign-by-design paradigm as it is imperative that new 
discoveries, methods, and processes are accessible to diverse 
stakeholders and benefit all communities.
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Alongside the FAIR principles, it is equally essential to 
incorporate considerations of data justice. Not all stakeholder 
communities have access to the information or are part of the 
innovation process. Hence, it is important that our information 
infrastructure can break down current barriers to access so that 
all stakeholders can participate in and contribute to discussions 
on the benign-by-design paradigm for smarter chemistries. We 
also need a methodology that is capable of including economic 
and social factors in the use of materials and chemicals so that 
smarter chemistries can transform the unequal impact that 
hazardous materials and chemicals currently have on different 
communities. We require a broader definition of performance 
that encompasses engineering functionality, hazard impacts, 
and social and economic considerations. Any effort to develop 
smarter chemistries must incorporate all these factors at the out-
set, so that we embed social justice metrics into our informatics-
driven framework for smarter chemistry.42–44 By embedding the 
principles of “FAIR and just” at the outset, we would be able 
to achieve this goal of accelerated discovery and design of new 
materials that meet targeted functionalities and minimize or 
eliminate hazard impacts, for the betterment of all communi-
ties. We also recognize that holistic solutions must be under-
pinned by end-use-focused material science and chemistry, all 
framed by considerations of environmental impact, and social 
and economic justice.

Conclusion
Given that chemical pollution has surpassed safe levels for 

both the planet and humanity, this innovative approach aims to 
accelerate our search for safer and smarter chemistry solutions 
for materials essential to society. Time is of the essence. Corpo-
rations, investors, nonprofits, and governments worldwide are 
advancing programs to drive safer chemicals and more sustain-
able materials in their supply chains, production, and products, 
but the quest for these innovations has exposed the gaps in our 
understanding of what makes a material perform or function the 
way it does. Informatics-based material discovery approaches 
will advance knowledge of materials and chemistry that was 
previously unknown or uncertain. Expanding this toolbox will 
facilitate solutions to complex issues like PFAS by offering 
deeper insights into the molecular properties and mechanisms 
responsible for environmental and human toxicity, as well as the 
performance characteristics essential to specific chemistries. 
The resulting aggregated and organized data will guide decision-
making that leads to the development at the scale of sustainable 
materials that are benign-by-design for targeted functionalities. 
An expanded definition of materials performance and sustain-
ability that includes functionality and hazard impacts inherent 
in the synthesis and fabrication of materials will be embedded 
into the front end of research and development for material 
innovation programs. This is a grand challenge, one that will 
only be met by a broad set of stakeholders collaborating to bring 

disparate pieces of information together to fill data gaps, avoid 
the development of regrettable substitutions for materials of 
concern, and accelerate the pace of change toward solutions that 
contribute to net zero circular economies.
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