

HIGH ENTROPY ALLOYS AGAINST EXTREME **CONDITIONS FOR SATELLITAL MATERIALS**

Victoria Alarcón Palacio

INTRODUCTION

Satellite Orbits:

- Low Earth Orbit
- Medium Eart Orbit
- Geostationary Earth Orbit

Extreme conditions such as:

- High energy radiation
- Heat and cold cycling
- Ultra vacuum
- Atomic oxygen

Figure 1. Extreme conditions in space

BACKGROUND

Figure 2. Postflight Long Duration Exposure Facility M0001 Heavy lons in Space experiment

Satellite Structure	GRADE			ALLOY				FEATURES			
 Engine Solar Panels (most vulnerable) Antenna System Protective Covering 	1000 series			99% pure aluminium				Electrically conductive			
	2000 series			Copper				Increased strength			
	3000 series			Manganese				Food safe			
	4000 series			Silicon				Lower melting point			
	5000 series			Magnesium				Higher corrosion resistance			
Solar Panels are made of:	6000 series			Magnesium and silicon				Respond well to heat treatment			
	7000 series			Zinc				High strength			
 Conventional Aluminum Allova 	Alloy	Al%	Mg%	Si%	Cu%	Mn%	Zn%	Cr%	Fe%	Ti%	
 Honeycomb Arrays 	5052	97.7	2.8	0.25	0.1	0.1	0.1	0.35	0.4	-	
	6061	98.6	1.2	0.8	0.4	0.15	0.25	0.35	0.7	0.15	
	7075	91.4	2.9	0.4	2.0	0.3	6.1	0.28	0.5	0.2	

Figure 3. Classification of aluminum alloys and their composition

PROPOSAL

The use of High Entropy Alloy coatings will improve the durability of solar panels exposed to satellite orbit

STAGES

CONCLUSIONS

Preparation Phase

- Meetings with FACH and CCHEN
- HEA's • Fabrication coated of aluminum alloys
- Fabrication of other equipments

Testing Phase

- post and • Do pre exposure analysis (superficial XPS, SEM, EDS, microstructural XRD and chemical OCP, EIS, LSV)
- Exposure of samples
- constituent to the Materials satellites are subjected to extreme conditions.
- It is imperative to innovate in materials that safeguard their structure.
- High entropy alloys are emerging as a promising alternative in this regard.

ACKNOWLEDGEMENTS

REFERENCES

This research work is supported by Research National the and Development Agency of Chile, (ANID 21230959) and Pontifical Catholic University of Chile.

-Wang, M., Khan, et.al. (2021). Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 14(5), 2535-2548.

-Teng, L., Zheng, X. D., & Jin, Z. H. (2019). Performance Optimization and Verification of a New Type of Solar Panel for Microsatellites. International Journal Of Aerospace Engineering, 2019, 1-14.

-Dewangan, S. K., et.al. (2022). A review on High-Temperature Applicability: A milestone for high entropy alloys. *Engineering* Science And Technology, An International Journal, 35, 101211.