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Abstract

Multicomponent reaction for the synthesis of spiro 

oxindole (Master’s thesis)

For reviews on Wittig rearrangements see: Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885– 902., L. Rycek, L.; Hudlicky, T. Angew. Chem., Int. 

Ed., 2017, 56 , 6022–6066, and Wang, F.; Wang, J.; Zhang, Y.; Yang, J. Tetrahedron 2020, 76, 130857.

• The Wittig rearrangements ([2,3], [1,2] and [1,4]) are a pivotal synthetic strategy for forming 

carbon-carbon bonds.

• Tin-lithium exchange provided regioselectivity in Wittig rearrangements, but tin’s toxicity led to 

a search for other materials.

• Our prior research has demonstrated that directed carbanion generation through silicon-lithium 

exchange or α deprotonation to silicon significantly enhances regioselectivity in Wittig 
rearrangements. Therefore, it is a greener approach to Wittig rearrangements.

• An atom economical route for accessing α silyl alkanals has been developed using [1,2]-

Carbon to carbon silyl migration chemistry.

Mori-Quiroz, L. M.; Maleczka, R. E., Jr. J. Org. Chem. 2015, 80, 1163−1191 
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of an allylic ether
Wittig rearrangement and its applications

• The Wittig rearrangement involves the isomerization of carbanionic ethers, resulting in 

products that predominantly feature alcohol or carbonyl functionalities.

Control of regioselectivity during Wittig rearrangement

using tin-lithium exchange chemistry

• For unsymmetrically substituted ethers, the generation of an anion capable of Wittig 

rearrangement can be controlled by installing an anion-generating group at either the  or 

′.

Silylcyclopropanes by selective [1,4]-Wittig rearrangement 

of 4-silyl dihydropyrans

a Diastereoselectivity determined by 1H NMR of the crude reaction 

mixture.
b Reaction run on a 2 mmol scale.
c A small amount (<5%) of the presumed [1,2]-Wittig product within a 

complex mixture was observed but not fully characterized.
d 15% of unreacted dihydropyran 1h was recovered.
e 2.2 equiv of sec-BuLi was used.

• Relocating the silyl group to the 4-position of the 

dihydropyran scaffold led to a highly selective [1,4]-

Wittig rearrangement, which afforded silyl cyclopropyl 

acetaldehydes.
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Department of Chemistry, Indian Institute of Technology Patna (Unpublished work)

• Wittig rearrangements of diastereomeric 2-silyl-dihydropyrans result in regio-divergent ring 

contractions to α-silylcyclopentenols and/or (α-cyclopropyl)acylsilanes.

• Under acidic conditions, α-hydroxy allyl silanes undergo [1,2]-carbon to carbon silyl migration, 

leading to the formation of α-silyl aldehydes.

• A one-pot multicomponent reaction for the synthesis of spiro oxindole was developed. This 

method has the advantages of high yields, low temperatures, visible light as an energy 

source, and ethanol/water as a solvent.

• Efforts are being made towards a more sustainable method for Wittig rearrangement by 

Integrating photochemistry into the Wittig rearrangement.
Maleczka Group Members
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Atom economy

O SnBu3

n-BuLi (1.5 equiv)

THF, –78 °C, 30 min

OH

[2,3]-Wittig

95%
Toxicity of tin

Stereoconvergent [1,2]- and [1,4]-Wittig rearrangements of 

2-silyl dihydropyrans

Mori-Quiroz, L. M.; Maleczka, R. E. Jr. J. Org. Chem. 2015, 80, 1163–1191.

• Wittig rearrangements of diastereomeric 2-silyl dihydropyrans result in regio-divergent ring 

contractions to α-silylcyclopentenols and/or (α-cyclopropyl)acylsilanes. 

• The [1,4]-Wittig predominates when the starting pyrans bear ortho and para-directing groups 

on the aromatic appendage and/or by sterically demanding silyl groups. 

• The [1,2]-pathway dominates with meta-directing or electron-poor aromatic moieties and/or 

smaller silyl groups.

• Cis and trans diastereomers exhibit different reactivities but converge to a single [1,2]- or 

[1,4]-Wittig product with high diastereoselectivity and yield.
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Regioselective Wittig rearrangement using silicon 

chemistry: a greener approach 

2 minutes after dissolving alcohol in CDCl3 12 hours after dissolving alcohol in CDCl3

Serendipitous [1,2]-Carbon to carbon silyl migration

Singh, D.; Maloba, E. W.; Maleczka, R. E. Jr. manuscript in preparation
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• The Wittig rearrangement has gathered substantial interest within the scientific community 

owing to its mechanistic perspective and synthetic utility. 

• Guo-Ming Ho and Yu-Jang Li developed a practical method in which after [1,2]‐Wittig 

rearrangement/lactonization, γ‐benzyl butenolides were applied in total synthesis.
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Ho, G-M.; Li, Y-J. Asian J. Org. Chem. 2018, 7, 145 –149. 

• Our group developed regioselective Wittig rearrangements of α-alkoxy silanes via silicon-

lithium exchange based on the previous idea.

• A milder approach utilizing fluoride deprotection of the silyl group also enables [2,3]-Wittig 

rearrangement.
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• The tin-lithium exchange generates unstable carbanions, which can then be isomerized 

via Wittig rearrangements. The Wittig-Still rearrangement has been applied widely in the 

total synthesis of natural products.

• The major disadvantage of this method is the toxicity associated with tin, which led to a 
search for approaches involving non-toxic materials.

Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927–1928. 

Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115–1118.
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• Another way of controlling the regioselectivity of unsymmetrically substituted ethers is by 

modifying the pKa of the protons at the  or ′ position. For instance, placing a silyl group at  

or ′ position can act as an anion stabilizing group.

• Our research group has utilized this approach to provide selectively in [1,4]-Wittig 
rearrangement products.

Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115–1118. Onyeozili, E. N.; Maleczka, R. E. Jr. Chem. Commun. 2006, 23, 2466–2468

Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1111–1113.            

General scheme towards the synthesis of [1,2-] and [1,4]-Wittig 

starting materials (2-silyl-6-aryl-5,6-dihydropyrans)

Mori-Quiroz, L. M.; Maleczka, R. E. Jr. J. Org. Chem. 2015, 80, 1163–1191.
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• Atom economy

• Greener solvent

• Visible light as an energy source

Atom economy
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