

Enhancing Interfacial Capacitance in Ionic Liquid Electrolyte Blends Hrishikesh Tupkar, Jack Verich, Sila Alemdar, Jack McAlpine, and Matthew Gebbie Department of Chemical and Biological Engineering, University of Wisconsin-Madison

Amphiphilic Anions Enhance Capacitance on Negative Glassy Carbon Surface

--- Neat [C₄MIm][TFSI] ← 5% [C₄MIm][AOT] → 10% [C₄MIm][AOT] Potential (V vs Fc/Fc⁺) Weaker correlations between the amphiphilic anion AOT and C4MIm selectively increase capacitance over one half of the electrochemical window. Capacitive Enhancement in Salt-in-Ionic Liquid Electrolytes on Negative Gold Surface --- Neat [C₄MIm][TFSI] → 10% [Li][TFSI] - 10% [Na][TFSI] Voltage 10% [Mg][(TFSI)₂] -0.50.5 — 1 1.5 Potential (V vs Fc/Fc⁺)

[Li][TFSI] or [Na][TFSI] in [C₄MIm][TFSI] enhances capacitance at a negative gold

Summary

• Adding the amphiphilic anion AOT selectively enhances cathodic capacitance. The electrode-electrolyte interface can be engineered to promote favorable ion packing and surface reactions for electrochemical energy storage.

Acknowledgements

We acknowledge support from the DoD through the National Defense Science and Engineering Graduate Fellowship Program and ARO grant W911NF-23-1-0001.