

CHO

CH3

DEVELOPING FULLY BIO-BASED AND BIODEGRADABLE POLY (LACTIC ACID) BIOCOMPOSITES: LIGNOCELLULOSIC FIBER-REINFORCED FOR HIGH-PERFORMANCE APPLICATIONS

Giulia Herbst^{a,*}, Luiz Pereira Ramos^a, Marc Delgado-Aguilar^b, Marcos L. Corazza^a

^a Department of Chemical Engineering, Federal University of Paraná, Francisco H. Santos Av. 100, 81531-990 Curitiba, PR, Brazil; ^b LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain. (*qiuliaherbst@ufpr.br)

Objective

Elucidate the suitability of incorporating pine stone groundwood fibers (SGW), its fractionation cellulose fibers and lignin into PLA at different contents and evaluate the influence of silane as a coupling agent in the biocomposites thermo-mechanical properties.

Methodology, results and conclusion

- Processing properties, density, melt flow index, and melt rheology supported the
- Biocomposites are a good alternative to PP

Acknowledgments

