

Innovative Recycling and Circular Economy Techniques for Waste Management and Freshwater Contamination Mitigation: Converting Steel Slag, Agricultural, and Plastic Waste into Valuable Nanocomposites and Adsorbents

Background & Motivation

Among some of the numerous issues confronting our world today, two significant issues have piqued my interest:

1. Waste (steel slag wastes, Agriculture waste, and Plastic waste) which are causing landfill shortages and necessitating the development of innovative recycling and circular economy techniques.

2. Freshwater contamination which needs to be resolved

Step 1

Steel slag wastes were converted to slag nanocomposite by solvothermal preparation Technique for wastewater Treatment in an **Advanced Oxidation Process**

Research Approach

Step 2

Agriculture and Plastic waste were converted to biochar, graphene, and activated carbon by thermal pyrolysis and applied as an absorbent for the removal of organic contaminants and heavy metals from water

Kingsley Safo, Hussien Noby, Ahmed H. El-Shazly Department of Chemical & Biomolecular Engineering, University of Notre Dame

Step 3

Cigarette waste were converted to TiO_2/Zr impregnated with graphene oxide produced from plastic waste for CO₂ reduction and membrane desalination

Sustainable Development Goals Achieved

