

# **STUDY OF THE SYNTHESIS OF ZERO-VALENT IRON** NANOPARTICLES THROUGH LIFE CYCLE ASSESSMENT

<u>G. N. Miranda Ruiza,\*</u>, J. Crespi<sup>a,b,c</sup>, J. Garro<sup>a,d</sup>, A. M. Cuellar Felantana<sup>a,b,c,e</sup>, V. N. Montesinos<sup>a,b,e</sup> and N. Quici<sup>a,b,e</sup>

<sup>a</sup> Centro de Tecnologías Químicas, Departamento de Ingeniería Química, UTN-FRBA <sup>b</sup> División Química de la Remediación Ambiental, Gerencia Química, CNEA

<sup>c</sup> Instituto Sabato, UNSAM-CNEA

<sup>d</sup> Departamento de Sistemas y Herramientas para el Desarrollo Sustentable, SOQYA, GOSI, INTI

<sup>e</sup> Gerencia Química, CNEA, CONICET

\*gladysmirandaruiz1@gmail.com

## INTRODUCTION











Traditional chemical method: reduction of Fe(II) or Fe(III)





**RESULTS** 

### **Step 2: Inventory**

Based on the synthesis data, the inventory was constructed using 1 g of nZVI as a functional unit.

| Inventory                 | S2015                   | S2023                   |  |
|---------------------------|-------------------------|-------------------------|--|
| INPUTS                    |                         |                         |  |
| FeCl <sub>3</sub> (kg)    | 5.91 × 10 <sup>-3</sup> | 3.42 × 10 <sup>-3</sup> |  |
| NaBH <sub>4</sub> (kg)    | 2.97 × 10 <sup>-3</sup> | 1.71 × 10 <sup>-3</sup> |  |
| Ethanol (kg)              | 4.60 × 10 <sup>-1</sup> | 4.58 × 10 <sup>-1</sup> |  |
| NaOH (kg)                 | 3.27 × 10 <sup>-4</sup> | Not used                |  |
| Milli-Q water (kg)        | 6.00 × 10 <sup>-1</sup> | Not used                |  |
| N <sub>2</sub> gas (kg)   | 1.62 × 10 <sup>-1</sup> | 8.01 × 10 <sup>-2</sup> |  |
| Filter paper (kg)         | 1.13 × 10 <sup>-2</sup> | 1.13 × 10 <sup>-2</sup> |  |
| Energy                    | 3.20                    | 0.76                    |  |
| Stirring (kWh)            | 3.41 × 10 <sup>-2</sup> | 2.44 × 10 <sup>-2</sup> |  |
| Filtration (kWh)          | 1.41 × 10 <sup>-1</sup> | 4.91 × 10 <sup>-1</sup> |  |
| Drying (kWh)              | 3.02                    | 2.45 × 10 <sup>-1</sup> |  |
| OUTPUTS                   |                         |                         |  |
| Solid waste (kg)          | 1.13 × 10 <sup>-2</sup> | 1.13 × 10 <sup>-2</sup> |  |
| Wastewater (kg)           | 7.81× 10 <sup>-1</sup>  | 4.62 × 10 <sup>-1</sup> |  |
| nZVI (kg)                 | 0.001                   | 0.001                   |  |
| The augestities used in b | oth cococ are           | of the come             |  |

The quantities used in both cases are of the same order.

### **Step 3: Life Cycle Impact Assessment**



✓ In S2023, NaOH is not used to adjust the pH.

 $\checkmark$  In S2015, drying energy is significant.

#### ✓ Drying: **10** categories (5)

 $\checkmark$  Reaction: **2** categories (4)

✓ Reaction: 8 categories

✓ Filtration: 6 categories (6)

Note: The numbers in parentheses represent other relevant categories for each stage. Although they are not the main contributors, they highlight notable secondary effects to consider in the analysis.

