

NEW SYNTHETIC PATHWAY FOR PERYLENE SUBSTITUTION

INFIQC-UNC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina, carlos.rivas@unc.edu.ar

Carlos J. Rivas, María T. Baumgartner y Liliana B. Jimenez

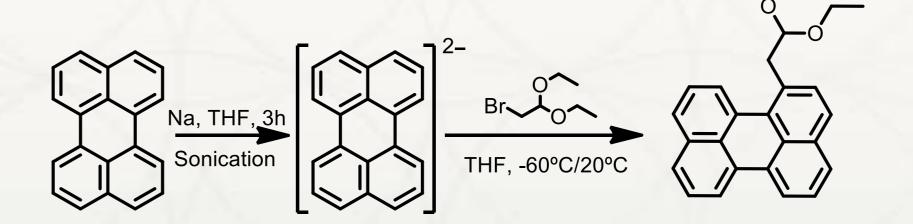
INTRODUCTION

Perylene (Fig. 1) is a polycyclic aromatic Suzuki-Miyaura Coupling² hydrocarbon (PAH) that, due to its rigidity, exhibits excellent electronic and optical

Buchwald-Hartwig Coupling³

Perylene

Product


SYNTHETIC BACKGROUND

properties,¹ conferring high fluorescence quantum yields depending on the type of substituent it possesses. Furthermore, if the substituents are located in the bay or peri region, they also induce modifications to these properties, enabling a wide range of light emission colors in the spectrum to be achieved

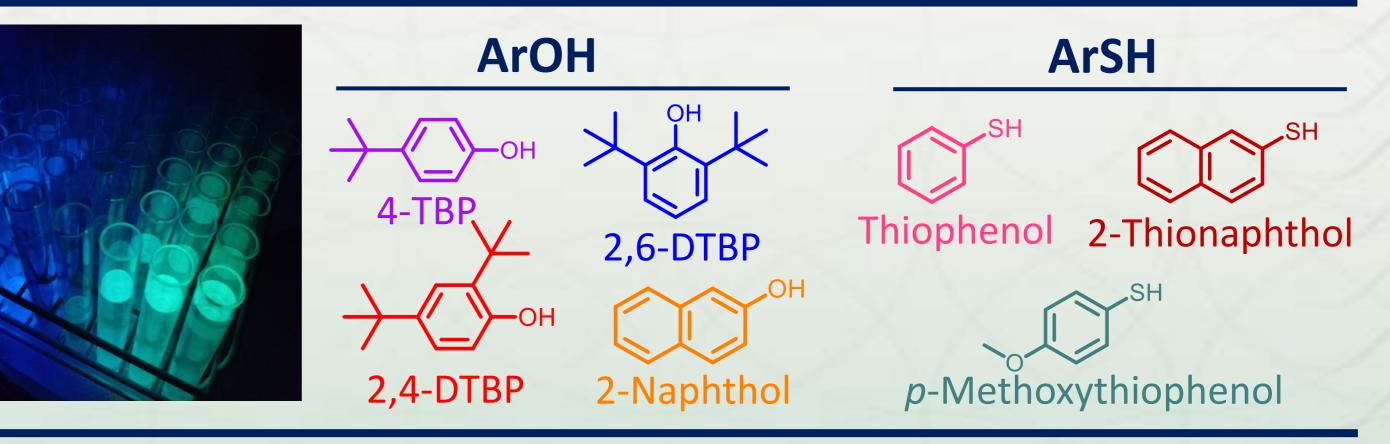

OBJECTIVES

Figure 1

Nucleophilic Substitution from the Perylene Dianion⁴

✓ Obtaining new perylene-derived products through substitutions mediated by electron transfer (ET). Specifically, the reaction between Br-perylene and various hydroxyaryls (ArOH) and arylthiols (ArSH) was studied, as shown in Scheme 1.

t (h)

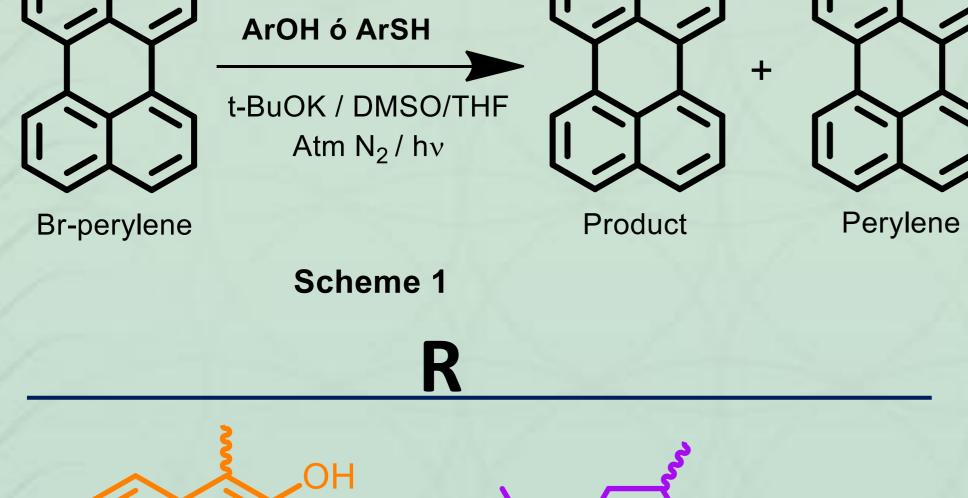

RESULTS

Table 1: Reaction conditions between Br-perylene with ArOH or ArSH.^a

ArOH /ArSH

Entry

Eq.

ОН	\rightarrow	<pre></pre>	ЭН
5-m 	Sm		S m

LIILIY	AIUN/AISH	ArOH/ArSH	Base	τ (Π)	Yield (%)	Yield (%)
1 ^{b,g}	2-Naphthol	3	3.3	1		
2	2-Naphthol	10	10.1	1,5	21	42
3 ^c	2-Naphthol	6	6.1	1,5	19	55
4 d,g	2-Naphthol	3.3	3.5	2		
5	Thiophenol	10	10.4	2	36	12
6 ^{e,g}	Thiophenol	10	10.1	2		
7 ^f	p-Methoxythiophenol	9.7	10	2	37	14
8	2-Thionaphthol	9.9	10.2	2	36	11
9 ^g	2,4-DTBP	9.9	10	2		
10 ^g	2,6-DTBP	10.2	10.4	5		
11	4-TBP	10	11.5	3	8	30

Eq.

^a [Br-Perylene] = 13,7 mM, Base = t-BuOK, DMSO= 10 mL y THF= 1 mL, T= 40 °C, N₂. Photorreactor equipped with two Hg-Halogen lamp, 100 W. Isolated yields. ^b Only DMSO. ^c [Br-Perylene] = 27,5 mM. ^d T= 100°C, Base= K₂CO₃, Not Irradiation. ^e Solvent= NH₃ liquid, T= -33 °C. ^f (CH₃)₂SO₄ is added at the end of reaction.^g Starting substrate is recovered.

CONCLUSIONS

REFERENCE

- The synthesis of new perylene-derived compounds was achieved, using \checkmark an **alternative pathway** to the use of metal catalysts, thereby expanding the family of these PAHs.
- Balzani, V. C., A.; Venturi, M. Molecular Devices and Machines. Concepts and Perspectives for the Nanoworld.; 2nd ed.; Wiley-VCH Verlag GmbH & Co., Weinheim, 2008.
- 2. Carrod, A. J. et .al. J. Mater. Chem. C, 2022,10, 4923-4928

The **selectivity** of the obtained products was demonstrated, with **new C-C**

bonds formed in reactions with ArOH and **C-S bonds** in reactions with

ArSH, which would allow for better functionalization of this chromophore.

Ahn, M. et. al. J. Org. Chem. 2021, 86, 1, 403–413.

Van Dijk, J. T. M. et .al. J. Org. Chem. 1996, 61, 1136 4.