

DESIGN AND SYNTHESIS OF 3.3-BICARBAZOLE-TRIAZINE DERIVATIVES AS POTENTIAL EMITTERS FOR OLED DEVICES

Laureano Marín Oliva, María A. El Ain, Marcelo Puiatti and María E. Budén

Instituto de Investigaciones en Físico-Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XHUA5000, Argentina. laureano.marin.oliva@unc.edu.ar

3. Computational calculations

Predicting photophysical properties from molecular modeling

	R ¹
	OCH
	CF
	C(CH
	NPł
Ph	СН
	Н

Criterion: ΔE_{S-T} (meV) λ_{em} (nm) 1) ΔE_{S-T} < 300 meV 416 293 2) λ blue 404 298 293 415 294 416

415

413

3 candidates chosen to synthezise

2. Goals

- Perform the rational design of new TADF emitters assisted by computational modeling of different donor-acceptor (D-A) structures with blue emission.
- Develop the synthesis of TADF emitting molecules, selected through computational calculations, using sustainable "Green Chemistry" synthesis strategies.
- Characterize the photophysical and photochemical properties of the newly obtained materials, both in solution and in the solid state, and evaluate their feasibility as emitters in electrochemiluminescent devices

4A. Acceptor motif synthesis

Suzuki

2,4,6-trichoro-1,3,5-triazine (Trz) functionalization^a

4B. Donor motif synthesis

BiCz

i) Bicarbazole synthesis (BiCz)

Optimized conditions for reaction 1:

- Less metal oxidant
- Less reaction time
- Less toxic and cheaper solvent
- No yield compromise

Metal free synthesis of BiCz with comparable yields via reaction 2.

ii) **BiCz** functionalization

Projection:

Ullmann

Reference conditions:

292

292

(1) $FeCl_3 \cdot 6H_2O$ (4 eq) in 17 mL of $CHCl_3$, 24 h. yield: 71% Synth. Commun. 2019, 18, 2330–2341

(2) DDQ (2 eq) in 100 mL of CH_2Cl_2 and 10 mL of MSA. Yield: 93%. J. Org. Chem. 2019, 84, 73–93

	Entry Conditions		Extraction	Yield		
	A FeCl ₃ ·6H ₂ O (4 eq), CHCl ₃ , 24 h.		A FeCl ₃ ·6H ₂ O (4 eq), CH 24 h.		Methanol, ethyl acetate and wáter	-
	B Anhydrous FeCl ₃ (4 eq), CHCl ₃ , 3 h Solution		Methanol and saturated NaOH solution	25%		
	С	Anhydrous FeCl ₃ (4 eq), CH ₂ Cl ₂ , 3 h	Ethanol, ethyl acetate, Zn poder and acetic acid	29%		
	D	Anhydrous FeCl ₃ (3 eq), CH ₂ Cl ₂ , 1.5 h	Ethanol, ethyl acetate, Zn poder and acetic acid	43%		
$ \begin{array}{c} D \\ D \\ D \\ C \\ C \\ H_2 \\ C \\ l_2 \\ y 10 \\ m \\ de \\ MS \\ \end{array} $		DDQ (2 eq) en 100 mL de CH ₂ Cl ₂ y 10 mL de MSA	Saturated Na ₂ CO _{3(ac)} and brine	37%		

Projection: Develop a metal	Entry	Conditions	Yield (Trz-Ph2)
free synthesis of the acceptor	Α	PhB(0H) ₂ (2,2 eq), Pd (0,04 eq) y Na ₂ CO ₃ (s) (2 eq)	_
motif.	В	PhB(OH) ₂ (2,2 eq), Pd (0,04 eq) y Na ₂ CO ₃ 2M	_b
	С	PhB(OH) ₂ (2 eq), Pd (0,04 eq) y Na ₂ CO ₃ 2M	6%

^aReaction conditions: Trz (1 eq, 2 mmol) in 15 mL of toluene under innert atmosphere. ^bOnly **3** was obtained.

R	Yield
CH ₃	16%
OCH ₃	13%
C(CH ₃) ₃	9%
	R CH ₃ OCH ₃ C(CH ₃) ₃

Find reaction conditions to obtain

selectively BiCz-R with better yields.

*Isolated yield for **BiCz-R**

Conclusion

 A synthetic pathway was proposed and employed for obtaining potential TADF emitters. Each reaction was tested and optimized, resulting in the synthesis of 3 target molecules. Projections

Characterize and compare experimental data with calculated ones.

BiCz-R-TrzPh₂

All 3 products are soluble in

chloroform and dichloromethane

Reaction conditions: Trz-Ph2 (2 eq), BiCz-R (1 eq). 1 h reflux. Cool at r.t. and add Trz slowly

Determine if the methodology proposed is an efficient and greener way to predict novel target molecules