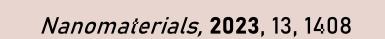
FROM THE COMPUTER TO THE LAB: RATIONAL DESIGN AND SYNTHESIS OF LIGHT - EMITTING MATERIALS María Alexia El Ain, Laureano Marín Oliva, Marcelo Puiatti, María Eugenia Budén Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC) Departamento de Qca. Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina maelain@unc.edu.ar

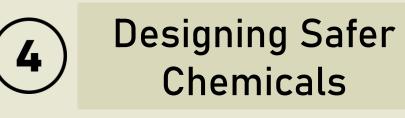

BACKGROUND AND GOALS

OLEDs - 🗐 Use of organic molecules instead of gallium and arsenic compounds Better efficiency and brightness than other light-emitting devices using thermally activated delayed fluorescence (TADF) θ **Electrical excitation** Org. Electron, 2021, 96, 106199

- Perform a rational design of light emitting materials based on predictions of photophysical features
- Synthesize the best candidates and do the photophysical and electrochemical characterization

1) Rational design: use computational *4* methods (DFT and TD-DFT) to predict HOMO – LUMO distribution, emission wavelength and ΔE_{S-T} of materials

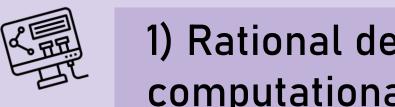
2) Synthesis: develop methodologies of heterocyclic synthesis under mild conditions (room temperature, metal – free and visible light)



GREEN CHEMISTRY PRINCIPLES

Rational design of molecules that could work as emitters, leads to prevent large amounts of waste products being produced in synthesis

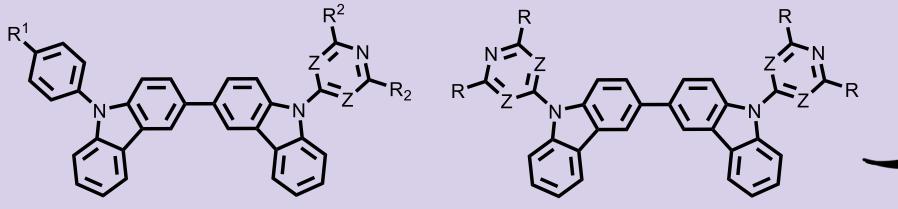
Synthesis of organic molecules for emitters instead of metallic compounds


Synthesis of different nitrogen heterocycles under mild conditions: room temperature, metal – free reactions, visible light and non-toxic solvents

Design for Energy 6 Efficiency

Catalysis 9

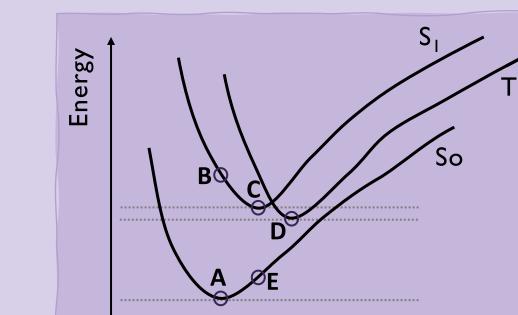
RESULTS



1) Rational design using computational methods

Z= CH, N

 $R = H, Ph, C_6H_4F$


Light – emitting materials based on bicarbazoles

Z= N, CH R¹= H, CH₃, CF₃, C(CH₃)₃, NPh₂ p2_uph cuc

with computational chemistry to choose the best candidate

Prediction of photophysical properties

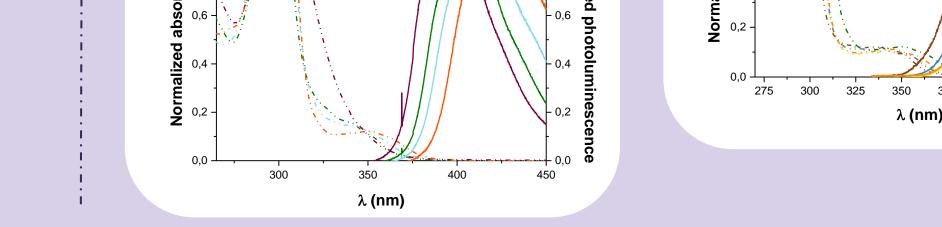
5)

What properties are we looking for?

- HOMO LUMO distribution
- ΔE_{S-T} (difference between S₁ and T₁)
- Emission wavelength

How do we do it?

Analyzing geometries and energies in ground state (So), first excited state (S_1) and triplet state (T_1) with DFT and **TD-DFT** calculations


R ² = H, Ph, C ₆ H ₄ F I- HOMO – LUMO distribution analysis	Internuclear distance				6	the best o	molecules a candidates f [:] materials		
	2, 3, 4- Optimization of S_1 and T_1 , prediction of ΔE_{S-T}	Molecule	Z	RI	R ²	ΔE _{S-T}	λ _{em} (nm)		
HOMO – LUMO	and emission λ	2	Ν	н	Ph	362	413		
Ph ₂ N HOMO LUMO inversely proportional	\sum	3	Ν	CF ₃	Ph	369	404		
to RISC speed		4	Ν	C(CH ₃) ₃	Ph	362	415		
		5	Ν	NPh ₂	Ph	496	417		
 2) Synthesis of <i>N</i>-containing heterocycles Synthesis of BiCz by S_{RN}1 reaction \$ Optimization of conditions \$ Analysis of scope \$ Reaction mechanism studied by spectroscopy and computational chemistry 	bencimidazoles by photocatalysis Optimization of conditions Analysis of scope Reaction mechanism studied by spectroscopy and Study of p Study o				Tophysical characterization Tophotophysical properties of bicarbazoles and the effectent substituents isible spectroscopy oluminescence spectroscopy oluminescence Quantum Yields mes UV-visible and Photoluminescence spectra of BiCz-CF ₃ in different solvents				
R1a, Z: CH, R: H, X: Br $2a = 59\%$ 1e, Z: CH, R: H, X: Cl $2a = 65\%$ 1b, Z: CH, R: CH ₃ , X: Br $2b = 50\%$ 1f, Z: CH, R: CF ₃ , X: Cl $2f = 52\%$ 1c, Z: CH, R: OCF ₃ , X: Br $2c = 45\%$ 1g, Z: N, R: H, X: Cl $2g = 55\%$ 1d, Z: N, R: CH ₃ , X: Br $2d = 41\%$ 1h, Z: CH, R: OCH ₃ , X: Cl $2h = 43\%$			and Photolu f Bicarbazole BiCz-OMe BiCz-H BiCz-OCF ₃ BiCz-CF ₃	es in DMSO	- 0,1 - 8,0 - 8,0 - 0,0 - 0,0 - 4,0 - 4,0	BiCz-CF ₃ Hexan DCM MeOH ACN DMSC	н		

2d = 41% 1h, Z: CH, R: OCH₃, X: Cl **1i**, Z: CH, R¹: CH₃, R²: H, X:Br **2i = 65%**

Room temperature

Non-toxic solvents (ACN, DMSO)

El Ain, M. A.; Puiatti, M.; Budén, M. E. Eur. J. Org. Chem. 2022, 2022, 1–12.

CONCLUSIONS AND PROJECTIONS

✓ Choice of best candidates for TADF emission to be synthesized

> ✓ Synthesis of N-containing heterocycles using visible light (S_{RN}) and photocatalysis)

> > Photophysical characterization of BiCz to understand the excited state and dual emission

Continue with the photophysical characterization of **Bicarbazoles and bencimidazoles**

> ✓ Functionalization of Bicarbazoles to obtain light-emitting materials and do photophysical characterization of final molecules