Theoretical-Experimental Study of Carbon Electrode Porosity in Sodium and Lithium Batteries
Addressing the growing energy demand in a sustainable manner is one of the most pressing global challenges today. Achieving this requires optimizing the efficiency of energy storage and conversion systems while aligning with green chemistry principles to minimize environmental impact. In this context, this work explores both theoretically and experimentally how the structure of porous carbon materials, synthesized from renewable or low-impact precursors, and used as electrodes in metal-air batteries (e.g., Na-air, Li-air), affects the physicochemical properties of confined electrolytes.