Skip to main content

OLED

From the Computer to the Lab: Rational Design and Synthesis of Light-Emitting Materials

Many organic molecules are efficient light emitters used for optoelectronic devices such as OLEDs, due to their advantages over metallic counterparts, including lower toxicity, simpler disposal, and sustainability. However, the methodologies commonly used in organic synthesis to obtain these molecules often rely on harsh conditions and generate large amounts of waste, making them both ineffective and inefficient. This work aligns with some of the principles of green chemistry across different stages.

Design and Synthesis of 3,3-Bicarbazole-Triazine Derivatives as Potential Emitters for OLED Devices

The efficient design and synthesis of emitters for organic light-emitting diodes (OLEDs) is a critical area of research, driven by the demand for cost-effective, sustainable, and high-performance blue emitters. This study presents the design and synthesis of 3,3’-bicarbazole-triazine derivatives as potential thermally activated delayed fluorescence (TADF) emitters. Using computational modeling, donor-acceptor (D-A) structures were rationally designed to exhibit blue emission and low singlet-triplet energy gaps.