Skip to main content

Organic synthesis

Design of Heterogeneous Cobalt Nanocatalysts Stablized by Natural Eutetic Solvents for Applications in Organic Synthesis

Catalysis plays an essential role in the synthesis of organic compounds, fully aligning with the ninth principle of sustainable chemistry. In recent years, nanomaterials have emerged as promising catalysts, offering stability, recyclability, and high efficiency. Among the most widely used catalysts in organic synthesis are those derived from palladium (Pd), a highly effective but costly and scarce metal.

Design and Synthesis of 3,3-Bicarbazole-Triazine Derivatives as Potential Emitters for OLED Devices

The efficient design and synthesis of emitters for organic light-emitting diodes (OLEDs) is a critical area of research, driven by the demand for cost-effective, sustainable, and high-performance blue emitters. This study presents the design and synthesis of 3,3’-bicarbazole-triazine derivatives as potential thermally activated delayed fluorescence (TADF) emitters. Using computational modeling, donor-acceptor (D-A) structures were rationally designed to exhibit blue emission and low singlet-triplet energy gaps.

New Synthetic Pathway for Perylene Substitution

Perylene, a polycyclic aromatic hydrocarbon (PAH), is characterized by its inherent rigidity, which imparts exceptional electronic and optical properties. This structural feature supports high fluorescence quantum yields, which are influenced by the nature of the substituents attached. Notably, substituents positioned in the bay or peri regions of the molecule significantly alter these properties, enabling fine-tuning of light emission across a broad spectrum of colors.

Green Photoredox Catalysis Using Near-Infrared Light: Two-Photon-Absorption Enabled Cyclization

Over the past two decades, there has been a significant surge of interest in the field of ultraviolet and/or visible (UV/vis) light photocatalysis. UV-vis irradiation merged with noble metal-based photosensitizers of Ru, Ir as catalysts is most useful combination in this segment as these metal photocatalysts mostly absorb in the UV/vis region. However, high energy UV/vis irradiation sources as well as the noble-metal based photosensitizer are not considered as green.

Progress Towards the Synthesis of Quinone-based Cathode Materials for New Rechargeable Battery Architectures

Our growing population, development, and increasing energy demands will strain the environment in the coming decades, necessitating breakthroughs in sustainable energy generation and storage. State-of-the-art lithium-ion batteries face significant challenges, including limited lithium resources, safety issues, and electrochemical performance nearing theoretical limits. Novel rechargeable batteries, such as magnesium-ion batteries, present promising alternatives due to their material abundance and improved safety.