Skip to main content

Efficiency

Sustainable Detergents and Soaps

Greener soaps and detergents. Method's products are made from at least 70% natural, biodegradable, and compostable organic compounds. These organic compounds degrade in 28 days or less. When the product is composted, it breaks down to only benign compounds. Harsh chemicals are not used in the manufacturing process. The surfactants used in their products are biodegradable and derived from plants; they include laureth-7, decyl glucoside, and lauryl glucoside. The colorants in their products are also non-toxic and biodegradable and are included in ultra-low concentrations.

Protein Surfactant Complex PSC™

Protein Surfactant Complex™ (PSC™) that improves surfactant power. PSC™ is the formation of complexes between certain proteins and metabolites derived from food-grade yeast with a broad range of surfactants. PSC™ enhances surfactant performance and efficiency. They work with a variety of surfacts. PSC™ also reduces the cost of production of cleaning products, agricultural chemicals, and other industrial products. PSC™ does not contain hazardous chemicals, volatile organic compounds, or ozone-depleting substances.

Evotherm®

Warm mix asphalt (WMA) technology with a biosynthetic surfactant. The biosynthetic surfactant in this WMA allows the mix to be manufactured at temperatures 60° to 90°F lower than the traditional asphalt. This reduces energy consumption by 55%, reducing carbon dioxide and nitrogen oxide emissions. This technology uses 75% more recycled material in its mix composition. Conventional asphalt paving mixes contribute to greenhouse gas emissions. 
 

Biocatalytic Surfactant Synthesis

Synthesis of surfactants from cellulosic material through a biocatalyzed process. This novel process for the synthesis of surfactants does not require large amounts of energy nor organic solvents. This technology can decrease carbon dioxide emissions and reduce deforestation from palm plantations. Conventional surfact production is based on petrochemicals and seed oils, such as palm oil. Surfactant synthesis involves highly hazardous compounds to human health and the environment. 

Thermal Polyaspartic Acid (TPA)

Two synthetic routes for the production of thermal polyaspartic acid. TPA is a non-toxic, biodegradable, and cost-effective polymer with applications in many industrial processes, such as agriculture, water treatment, detergent, and oil and gas industries. TPA functions as a more sustainable alternative to conventional polyacrylic acids (PAC). The first route for the synthesis of TPA consists of a solventless solid-state-polymerization-reaction that transforms the aspartic acid monomor into polysuccinimide, eliminating the use of organic solvents.

Atom Transfer Radical Polymerization (ATRP)

Atom Transfer Radical Polymerizatoin (ATRP) for manufacturing polymers. ATRP is the most effecting method of controlled radical polymerization (CRP). The ATRP process allows for the easy formation of polymers by assembling monomors in a piece-by-piece fashion. This allows for the production of a wide range of polymers with specific functions and properties. The ATRP process uses enviromentally friends chemicals, such ascorbic acid, and requires less transition metal catalysts.

Pevalen™

Non-phthalate plasticizer for flexible PVC. While flexible PVC is less dependent on raw fossil materials, significant ingredients in its production are plasticizers. Conventional plasticizers are made of phthalate esters, which carry health concerns. Prevalen™ is plasticizer made of pentaerythritol tetravalerate (PETV). This novel plasticizer has excellent processing properties, high plasticizing efficiency, exceptional UV resistance, low volatility and smoke. It is also produced using less finite raw materials than conventional plasticizers.

Manufacturing Process for Zerbaxa™

Merck Research Laboratories redesigned the manufacturing process for Zerbaxa™, a drug used to treat gram-negative bacterial infections resistant to conventional antibiotics. Ceftolozane sulfate is a key ingredient of the drug. Unfortunately, existing processes for its production require hazardous chemicals, a high process mass index, long cycle times, and low yields. Merck developed a sustainable second-generation manufacturing route.