Skip to main content

Cellulosic Materials

Biomass-Derived Electrode and Electrolyte for Sustainable Solid-State Supercapacitor

Supercapacitors, celebrated for their high power density and rapid charge-discharge capabilities, represent a promising solution to meet the increasing demand for sustainable energy storage systems. This research adopts a sustainable approach to develop green supercapacitors by leveraging biomass-derived materials for both electrodes and electrolytes, thereby aligning with global efforts toward green energy technologies and the circular economy.

Exploring Bio-Inspired Polysaccharide for Future Multifunctional Metamaterial Applications in Aerospace and Green Technologies

Bacterial nanocellulose (BNC) serves as a bio-inspired platform for developing multifunctional metamaterials, with potential applications in energy storage, aerospace, and biomedical technologies. This research integrates three key studies aimed at enhancing BNC’s performance and versatility. First, UV Radiation-Enhanced Production Yield increases scalability through sustainable biosynthesis, optimizing BNC production for larger-scale applications.

Synthesis of Alkyne-Functionalized Cellulose for Attachment of (Bio)molecules via Click Reaction

The development of sustainable and environmentally friendly materials is a key component of the green chemistry concept. In this context, cellulose tosylate (MCC-Tos) serves as a versatile precursor for the functionalization of cellulose. By substituting tosyl groups with alkyne groups, the potential of cellulose is enhanced, making it compatible with click chemistry reactions such as thiol-yne and copper-catalyzed alkyne-azide cycloaddition (CuAAC), which promotes greener processes.