Skip to main content

Sustainability

Enhanced Degradation and Thermal Stability in Partially Lignin-Derived Polyacetals by Incorporating a Linear Structure

The development of biodegradable polymers derived from renewable resources has been motivated by the environmental impact of plastic waste. The objective of our research is to improve
the degradation rate of spiro-polyacetals by integrating linear acetal units into their structure while preserving their desirable thermomechanical properties. The polymer, VPA-CDVE, was produced by reacting vanillin-based spiro-acetal monomer (VPA) with cyclohexanedimethanol vinyl ether (CDVE). The polyacetal that resulted was characterized using NMR spectroscopy, which

Investigating Metal-Cation-Containing Materials for Efficient Phosphorus Capture and Recovery

Phosphorus (P) is a crucial, limited resource responsible for sustaining food supply globally. However, P-discharge from agricultural runoff and wastewater treatment plant into water bodies contributes to eutrophication and the proliferation of harmful algal blooms, substantially threatening aquatic ecosystems. Several studies have demonstrated that metal-cation-containing materials like metal oxides, hydroxides and carbonates show great potential for P-capture and are emerging as a noteworthy category suitable for commercial and industrial applications in P-recovery.

Study of the Interactions Between Microbial Communities and Clay Minerals in Contaminated Environments: Implications for Bioremediation Processes

The Reconquista River, the second most polluted river in Argentina, accumulates large amounts of organic matter and persistent toxic pollutants in its sediments. These conditions drive the selection of microorganisms with the potential to degrade contaminants and facilitate bioremediation. Notably, these microorganisms form biofilms on clay minerals, enabling them to survive under extreme conditions and alter the properties of the sediments.

Supercritical Fluid Impregnation of Polyolefins with Organometallic Complexes for Fundamental Investigations of Catalytic C-C Bond Cracking

The challenge of plastic waste management has intensified globally due to the non-biodegradable nature and fossil-based origin of most plastics. This research presented explores a novel approach to plastic upcycling through ideal catalytic cracking, with a focus on greener reaction conditions, such as supercritical CO₂ (scCO₂) processing.

Developing Renewable Bioplastics from Bio-Derived Monomers

Enhancing the efficiency of material processing, utilization, and recycling is pivotal for advancing sustainability in modern society. Therefore, new eco-friendly materials and technologies are urgently needed to prepare and recycle/upcycle plastics through the value chain enabling a circular and sustainable economy. The objective of this study is to create sustainable methods for converting non-food biomass into recyclable polymers.

High-Performance Conductive Nanocomposites Based on CNF/PLA Reinforced by Functionalized Graphene Derivative

This project aims to combine the Brazilian group’s expertise in nanomaterials’ surface engineering and polymer-based nanocomposite with the Spanish group’s expertise in transforming agricultural and industrial waste (which is abundant in both Spain and Brazil) into valued natural source polymers, to incorporate the intrinsic properties of sustainable materials into nanocomposites for advanced applications.

Developing Renewable Bioplastics from Bio-Derived Monomers

Enhancing the efficiency of material processing, utilization, and recycling is pivotal for advancing sustainability in modern society. The objective of this study is to create sustainable methods for converting non-food biomass into recyclable polymers. One key compound, 4,4'-biphenyldicarboxylic acid (BPDA), is used as an additive in copolymer production and as a blending agent to improve the properties of polyester. BPDA was synthesized through the oxidation of 4,4'-dimethylbiphenyl (DMBP), a compound that can be efficiently derived from biomass-sourced 2-methylfuran.

Maximizing Value from Municipal Solid Waste Incineration Ash — Electrochemical and Chemical Methods for Material Recovery

Municipal solid waste incineration (MSWI) plays a critical role in our waste and energy ecosystem by reducing waste volume and generating electricity. However, the economic viability of MSW incinerators is at risk due to declining electricity prices. Meanwhile, MSWI ash represents an untapped resource for valuable compounds, with an embodied value of $100–$400/tonne, contrasted with incurred landfilling expenses (∼$50/tonne). Here, we propose an integrated process utilizing MSWI electricity to power electrochemical and chemical processes for mining MSWI ash.