Skip to main content

Hazard Reduction

Safer, Sustainable, Biodegradable, Solid-State Chemistry for Treat Cooling Water Systems

Solid chemistry water treatment. Solid chemistry replaces the heavy, hazardous drums of liquid chemistry used in water treatment. Solid chemistry eliminates the splashing and spilling of liquids, making delivery safer, cleaner, and easier. This technology is more cost-effective as it reduces shipping costs and eliminates expensive storage constraints and disposal fees. The process is also sustainable as it is composed of only biodegradable materials and eliminates dangerous spills and contributions to landfills.

Baypure® CX: Biodegradable and Non-Toxic Chelating Agent

Biodegradable, non-toxic chelating agent. Chelating agents are used in detergents, agricultural nutrients, and household and industrial cleaners. Traditional chelating agents are not biodegradable and readily dissolve in water. This novel chelating agent is biodegradable and non-toxic. The process only requires water, maleic anhydride, sodium hydroxide, and ammonia.

High-Purity Glucaric Acid Prodcution through Microbial Fermentation

Lactones, salts, crystals, and other forms of high-purity glucaric acid through fermentation using microbes from biomass. kalion Inc. uses patented microbes from biomass through synthetic biological processes to produce lactones, salts, crystals, and other forms of high-purity glucaric acid through fermentation. Glucaric acid can replace phosphates and chelating agents in detergents and waste treatment. The traditional use of phosphates and chelating agents may include eutrophication, which may interfere with the removal and treatment of toxic metals.

Wealth Out of Waste

Recovery of organic and inorganic chemicals from wastewater. Residual water is recycled through Anti-Solvent Crystallization (ASC), Chemical Dewatering (ChD), Reactive Extraction (Rx), or Eutectic Freeze Crystallization (EFC). This extraction process eliminates secondary and tertiary pollution and the need for a landfill. Recycling water also reduces the amount of freshwater needed for the process. These processes are more efficient than traditional evaporators and address corrosion. 

Downflow Gas Contactor (DGC)

Gas-liquid contactor-reactor. This reactor can be used for gas absorption, effluent treatment, and chemical reactions in processes involving catalysts (oxidation hydrogenation, carbonylation, and hydroformylation). Conventional gas-liquid contacting devices have lower efficiency due to low gas hold-ups, back-mixing, and less safety. This new design is simple, compact, and flexible, requiring less power and a smaller operating volume. It is also scalable without losing efficiency. Reaction rates are controllable, and the lack of moving parts ensures safer working conditions. 

FLUEPAC® Activated Carbon Products for Superior Mercury Control from Flue Glass and Green Re-Use of Coal Combustion Residuals

Filtering mercury and dioxin emissions. This technology reduces mercury and dioxin emissions from coal-fired power plants. It reduces effluent mercury levels by over 95% while maintaining the ash fly air retention properties. This technology is non-hazardous and landfill-safe. It is also scalable, as it can be implemented as a stand-alone solution or a part of a multi-pollutant treatment approach. 
 

AquaRefining™

Sustainable, closed-loop metal recycling process. The AquaRefining™ process is a clean, water-based recycling process for ultra-high purity lead. The process opeartes at room-temperature in a closed-loop and is nonpolluting. The closed-loop system enables the recycling of chemicals and water. This process yields products with higher quality and lower costs and reduces greenhouse gas emisisons by eliminating the smelting process. Recycling metals will lower the reliance on unsafe and toxic mining operations.

Maximyze®: High Quality Paper and Paperboard Production Through Enzymes

Enzyme that modifies wood composition and increases its capacity for becoming strong and quality paper. Paper strength is traditionally improved by using more expensive pulps, more energy, and different chemical additives. Maximyze® uses natural enzymes from fermentation. These enzymes modify cellulose to create more sites for hydrogen bonding, which translates into more fibrils that bind the wood fibers together. This technology reduces the need for high-cost materials and other methods. 

TAML™ Oxidant Activators(Look into NewTAML)

Activator chemicals that work with hydrogen peroxide to replace chlorine bleaches. TAML™ (tetraamido-macrocyclic ligand activators) activators can be used to prepare wood pulp for papermaking and remove stains from laundry. This technology eliminates chlorinated byproducts from wastewater streams and saves energy and water. This process minimizes pollution by employing reagents and processes that mimic those found in nature. More specifically, Terry Collins developed activators with the natural oxidant hydrogen peroxide.

Updraft Gasification System

Gasification systems that convert non-recyclable organic waste (bark, sawdust, clean construction/demolition debris, biosolids from sewage sludge) into a product called "syngas" that can be used to fuel heat and power. This novel process has low air emissions and particulate carryover, reducing emissions controls and permits costs. The design is also very simple and has few moving parts. The gasification system can process many challenging renewable waste feedstocks with moisture contents ranging from 6-60% and sizes up to 75 mm.