Skip to main content

Hazard Reduction

Synthesis of Levulinic Acid from Cellulosic Waste

Economic production of 100% renewable chemicals and second-generation advanced biofuels from any cellulosic waste stream. This company converts lignocellulose to levulinic acid. The cellulosic waste feedstock consists of woody biomass, municipal solid waste, cellulosic crops, and recycled paper and cardboard. Levulinic acid is versatile and has the potential for downstream derivative production, such as biofuels and renewable chemicals.

Fully Biodegradable Dyes from Algae

Carbon-negative pigment and ink products from algae. This product is a black algae-based pigment with a negative carbon footprint. Living Ink uses a by-product material from algae to make small black pigments in the form of dry powder or liquid dispersion. The product is bio-based, renewable, and resistant to UV-light exposure. The company's Algae Black is an alternative to carbon black; it can color ink, plastics, cosmetics, and textile products.

Nofia® Flame Retardant

Polymeric halogen-free flame retardant. Halogen-free flame retardant composed of DPMP polymers is synthesized in a solventless reaction that only produces phenol as a major byproduct. This phenol can be used to produce more DPMP. Compared to traditional FRs, this product has superior performance and eliminates environmental and health risks. Traditional FRs are halogenated, enabling hazardous materials to migrate to the exterior of plastics and increase human exposure through contact. 60% of plastic formulations contained halogenated FR.

DryView™

Uses photothermography to produce imaging technology that uses heat for medical imaging applications. The photothermography process consists of a latent image that is initially generated from the revelation of a sensitized emulsion to suitable light energy. The image is made visible by exposing it to heat. This process produces no liquid waste and does not require chemical developers and fixing solutions. This process eliminates large amounts of toxic chemicals and waste generated in traditional chemical photographic processing.

Blue4est®Sustainable Technology for Thermal Printing Paper

Thermal paper free of chemical color developers that releases images from a purely physical process. This product consists of three layers: a base paper, a colored paper, and an opaque paper layer. The opaque layer is comprised of polymeric particles (opaque styrene acrylic resin hollow spheres) that hide the pigmented-colored layer. When the opaque layer is exposed to heat, it becomes transparent, creating the print by revealing the colored layer underneath.

EV-8: A Robust, Efficient, and Low-Cost Refrigeration Solution Powered by Only Water and Sunlight

Electricity-free mobile refrigeration technology using only sun and water. Refrigeration unit that is lightweight, easy to carry, and fully portable. Product requires no electricity and emits no greenhouse gas emissions. Uses PhaseTek™ technology; when the internal reservoir of the product is filled with any water source, the product undergoes evaporative cooling, reducing the internal storage space by 10-15 degrees Celsius. Refrigeration reduces spoilage, which reduces waste.

No-Clean Soldering

Soldering process that eliminates the use of wave oil and solvents by installing hoods over the solder pots to maintain an inert atmosphere over the molten solder. Conventionally, soldering involves synthetic oil, soldering fluxes, and solvent cleaning (uses large amounts of TCA and TCE). The No-Clean process eliminates the use of wave oil and soldering fluxes, consequently eliminating the need for solvent cleaning. This process reduces the environmental impact of manufacturing solid ceramic resistor networks by reducing the amount of raw materials consumed.

FARADAYIC® HF-FREE Electropolishing Process

Method for electropolishing niobium surfaces with environmentally benign electrolytes. Niobium is one of the best materials for superconductor radiofrequency cavities. Conventional methods for making the interior of niobium optimally smooth are hazardous to the environment as they use concentrated sulfuric and hydrofluoric acids. Contrarily, Faraday Technologies electropolishes niobium with the repeated use of bipolar electric fields. This process uses less concentrated sulfuric acid compared to traditional methods and eliminates hydrofluoric acid.

Coldstrip™

Uses water and oxygen to remove photoresist and other organic contaminants in producing semiconductors and flat panel displays. Coldstrip™ uses a gas diffuser and an ozone generator. This process cleans more quickly than many chemical-based processes as it produces no solids in the water (eliminating the need for filtration) and does not require elevated temperatures. Traditionally, Piranha solutions (containing sulfuric acid and hydrogen peroxide) are used to produce semiconductors and flat panel displays.

Biocatalytic Process for the Synthesis of Esters for the Cosmetic Industry

Biocatalytic process for the synthesis of esters. Esters are important ingredients in cosmetics and personal care products. Traditional esters manufacturing requires strong acids and potentially hazardous solvents and produces undesirable byproducts that require energy-intensive purification. Using immobilized enzymes at mild temperatures as an alternative, Eastmen saves energy and avoids dangerous chemicals. This process produces no undesirable by-products, and the enzymes are easily removable via filtration.