Skip to main content

green chemistry

Developing Renewable Bioplastics from Bio-Derived Monomers

Enhancing the efficiency of material processing, utilization, and recycling is pivotal for advancing sustainability in modern society. The objective of this study is to create sustainable methods for converting non-food biomass into recyclable polymers. One key compound, 4,4'-biphenyldicarboxylic acid (BPDA), is used as an additive in copolymer production and as a blending agent to improve the properties of polyester. BPDA was synthesized through the oxidation of 4,4'-dimethylbiphenyl (DMBP), a compound that can be efficiently derived from biomass-sourced 2-methylfuran.

Preparation, Characterization and Application of Metallic and Bimetallic Nanocatalysts in the Synthesis of Potentially Bioactive Compounds, through Economic and Sustainable Processes

Supported metallic and bimetallic nanocatalysts were synthesized and characterized. They were employed in different steps of the synthesis of a variety of bioactive compounds, taken in place the high atom economy and the sustainability of the process. The recoverability and reusability of the nanocatalysts was studied. The nanocatalyst were used particularly in C-H activation reaction, through a cross dehydrogenative coupling reaction (CDC), to form new C-C and C-heteroatom bonds.

Photoinduced Synthesis of 4H-Benzo[E]Pyrazolo[1,5-B][1,2,4]Thiadiazine Derivatives by Intramolecular C-N Coupling

Sulfonamides represent an important family of compounds with diverse biological activities, especially recognized as antibiotics. 1,2,4-Benzothiadicines-1,1-dioxide belong to a family of cyclic sulfonamides with significant pharmacological applications, such as antimicrobial, antiviral and antidiabetic. In addition, they are used clinically as diuretics and antihypertensives.

Regional Event on "Green Chemistry and Chemical Safety" – Royal Scientific Society (RSS) in Jordan

Organized by the Royal Scientific Society in collaboration with Yale University and UNIDO as part of the prestigious Global GreenChem Program, the event will host the Fathers of Green Chemistry, Prof. Paul Anastas and Prof. John Warner, alongside key stakeholders from government, industry, and academia. 

The discussions will explore how Green Chemistry can fundamentally reform the concept of chemical safety, providing innovative solutions to reduce the burden of chemical management while advancing sustainability and driving industrial innovation. 

Mass spectrometry-based methods for analysis of ionic liquid species

The synthesis and use of ionic liquids (ILs) has increased steadily since their inception, driven by their distinctive useful properties. In cases where they replace harmful volatile organic solvents they are often considered “green” and in cases where they are recyclable, they may be considered sustainable. However, many of the properties—such as low volatility and stability—that make them attractive for applications also make them potential persistent contaminants, should they be released into the environment.

Sustainable Heterocycle Synthesis via Gold Catalysis: Exploring Amino Acids and Water-Soluble Catalysts

Heterocyclic ring systems are essential in drug design, serving as core structures in many approved drugs. Nitrogen- and oxygen-containing heterocycles, in particular, have become increasingly significant in recent years. Despite the availability of efficient synthetic methods, there is an ongoing need for new approaches that offer higher molecular complexity, better functional group compatibility, and atom economy, using readily available starting materials under mild conditions.

Green Chemistry for Climate and Sustainability Certificate Program at Yale University Information Session

Information webinar! Sign up through the Zoom link below.

April 30, 2025 7pm EST.

The Green Chemistry for Climate and Sustainability Certificate Program through the Yale School of the Environment is a 9-month, online, admissions-based curriculum for professionals and students in the chemical enterprise and related fields who wish to use the power and potential of green and sustainable chemistry and engineering to mitigate global climate and environmental challenges. The program does not require an extensive background in chemistry.

Visit our website!